scholarly journals Theoretical and Experimental Investigations About Vaneless Return Channels of Multi-Stage Radial Flow Turbomachines

Author(s):  
W. Fister ◽  
G. Zahn ◽  
J. Tasche

Based on the Navier-Stokes-Equations, a numerical method which is a variation of the “partially-parabolic” approach used by Moore et al., was applied to calculate the three-dimensional, turbulent, viscous flow in vaneless return channels of multistage radial flow turbomachines. To avoid the high demand for computer time and storage capacity generally needed for the numerical treatment of the Navier-Stokes-Equations, the method is restricted to the calculation of flows with a predominant flow direction without separation. The procedure carries out an iteration between a marching integration of the conservation equations through the three-dimensional flow field along the mean flow direction and the solution of an elliptic pressure correction equation. So it is guaranteed that downstream influences can be considered upstream.

2015 ◽  
Vol 767 ◽  
pp. 364-393 ◽  
Author(s):  
P. Lubin ◽  
S. Glockner

AbstractThe scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier–Stokes equations, in air and water. Recent progress in computational capabilities has allowed us to run fine three-dimensional simulations, giving us the opportunity to study for the first time fine vortex filaments generated during the early stage of the wave breaking phenomenon. To date, no experimental observations have been made in laboratories, and these structures have only been visualised in rare documentary footage (e.g. BBC 2009 South Pacific. Available on YouTube, 7BOhDaJH0m4). These fine coherent structures are three-dimensional streamwise vortical tubes, like vortex filaments, connecting the splash-up and the main tube of air, elongated in the main flow direction. The first part of the paper is devoted to the presentation of the model and numerical methods. The air entrainment occurring when waves break is then carefully described. Thanks to the high resolution of the grid, these fine elongated structures are simulated and explained.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
B. A. Younis ◽  
A. Abrishamchi

The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.


Author(s):  
S M Fraser ◽  
Y Zhang

Three-dimensional turbulent flow through the impeller passage of a model mixed-flow pump has been simulated by solving the Navier-Stokes equations with an improved κ-ɛ model. The standard κ-ɛ model was found to be unsatisfactory for solving the off-design impeller flow and a converged solution could not be obtained at 49 per cent design flowrate. After careful analysis, it was decided to modify the standard κ-ɛ model by including the extra rates of strain due to the acceleration of impeller rotation and geometrical curvature and removing the mathematical ill-posedness between the mean flow turbulence modelling and the logarithmic wall function.


Author(s):  
Adnan Munir ◽  
Ming Zhao ◽  
Helen Wu

Vortex-induced vibrations of two elastically mounted and rigidly coupled circular cylinders in side-by-side arrangement in steady flow are investigated numerically. The vibration of the cylinders is limited to the cross-flow direction only. The three-dimensional Navier-Stokes equations are solved using the Petrov-Galerkin Finite element method and the equation of motion is solved using the fourth order Runge Kutta method. It is well known that when the gap between two stationary side-by-side cylinders is very small, the flow between the two cylinders is biased towards one cylinder and the lift force on each cylinder is significantly smaller than that of an isolated single cylinder. The aim of this study is to investigate the effect of a small gap ratio of 0.5 between the two cylinders on the lock-in regime and the amplitude of the vibration of two side-by-side cylinders in a fluid flow. Simulations are carried out for a constant mass ratio of 2, a constant Reynolds number of 1000 and a range of reduced velocities. It is found that in the lock-in range of the reduced velocity, the two cylinders vibrate about their balance position with high amplitudes. Outside the lock-in regime the flow from the gap becomes biased towards one cylinder, which is similar to that from the gap between stationary cylinders.


Author(s):  
Amina Radhouane ◽  
Nejla Mahjoub Sai¨d ◽  
Hatem Mhiri ◽  
George Lepalec ◽  
Philippe Bournot

The aim of this paper is to examine experimentally as well as numerically the flowfield resulting from the interaction between a twin circular inclined hot jets emerging into a cooling crossflow. The resulting flowfield is quite complex due to the presence of different vortical structures including the kidney vortex, the horse-shoe vortex, etc... The evolution of the twin inclined jets through the crossflow could be depicted by tracking the mean-flow velocity field and its associated turbulence statistics by means of the PIV technique. This evolution can be influenced by many factors. Herein, we will deal with that resulted by the injection nozzles’ inclination and the jets’ spacing. Then, we performed a three dimensional sample of the studied configuration in order to simulate the evolution of the resulting flowfield. For that, the Navier Stokes equations were simulated with an RSM second order turbulent closure model. Then a non uniform meshing was applied. A good agreement was obtained between the experimental data and the numerical modeling. After validation we could represent in addition to the available results, the temperature distribution and the effects the variation of the injection inclination and that of the jets’ spacing bring on it (on its spatial evolution).


1990 ◽  
Vol 43 (5S) ◽  
pp. S245-S245
Author(s):  
Thomas J. Hanratty ◽  
K. Kontamaris

Observations of turbulent flow close to a wall reveal turbulent eddies which are elongated in the flow direction. This has motivated the use of a slender body assumption to simplify the Navier Stokes equations. Derivatives in the flow-direction are neglected so that three velocity components are calculated in a plane. The application of this 2 1/2D model to the viscous wall region (y+ < 40) shows that the turbulent velocity field can be represented by interaction of two eddies with spanwise wavelengths of 100 and 400 wall units. This model has been used to investigate the effect of favorable pressure gradients on a turbulent boundary-layer and to explore what determines the size of the stress producing eddies close to the wall. The accuracy of the basic physical assumptions are explored by examining resulte from a computer simulation of the three-dimensional time dependent turbulent flow in a channel. Some possible improvements are discussed, which make use of the observation that spatial derivatives in the flow direction can be related to time derivatives by using a convection velocity.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Sign in / Sign up

Export Citation Format

Share Document