Solute dispersion in pulsatile Casson fluid flow in a tube with wall absorption

2016 ◽  
Vol 793 ◽  
pp. 877-914 ◽  
Author(s):  
Jyotirmoy Rana ◽  
P. V. S. N. Murthy

The analysis of axial dispersion of solute is presented in a pulsatile flow of Casson fluid through a tube in the presence of interfacial mass transport due to irreversible first-order reaction catalysed by the tube wall. The theory of dispersion is studied by employing the generalized dispersion model proposed by Sankarasubramanian & Gill (Proc. R. Soc. Lond. A, vol. 333 (1592), 1973, pp. 115–132). This dispersion model describes the whole dispersion process in terms of three effective transport coefficients, i.e. exchange, convection and dispersion coefficients. In the present study, the effects of yield stress of Casson fluid ${\it\tau}_{y}$, wall absorption parameter ${\it\beta}$, amplitude of fluctuating pressure component $e$ and Womersley frequency parameter ${\it\alpha}$ on the dispersion process are discussed under the influence of pulsatile pressure gradient. In a pulsatile flow, the plug flow radius changes during the period of oscillation and it has an effect on the dispersion process. Even with the Casson fluid model also, in an oscillatory flow, for small values of ${\it\alpha}$, the dispersion coefficient $K_{2}$ is positive, but when the value of ${\it\alpha}$ is as large as 3, $K_{2}$ takes both positive and negative values due to the fluctuations in the velocity profiles. This nature becomes more predominant for ${\it\tau}_{y}$, $e$ and ${\it\beta}$. It is observed that initially, for small time, the amplitude and magnitude of fluctuations of $K_{2}$ becomes more rapid and increases with time but it decreases after certain time and reaches a non-transient state for large time. Like in the case of Newtonian model, double frequency period for $K_{2}$ is observed at small time for large values of ${\it\alpha}$ with the Casson model for blood. It is seen that critical time for which $K_{2}$ reaches a non-transient state is independent of ${\it\tau}_{y}$ and $e$ but is dependent on ${\it\alpha}$. It is also observed that the axial distribution of mean concentration $C_{m}$ of solute depends on ${\it\tau}_{y}$ and ${\it\beta}$. But the effect of $e$ and ${\it\alpha}$ on $C_{m}$ is not very significant. This dispersion model in non-Newtonian pulsatile flow can be applied to study the dispersion process in the cardiovascular system and blood oxygenators.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. Sinha ◽  
G. C. Shit ◽  
P. K. Kundu

A theoretical investigation concerning the influence of externally imposed periodic body acceleration on the flow of blood through a time-dependent stenosed arterial segment by taking into account the slip velocity at the wall of the artery has been carried out. A mathematical model is developed by treating blood as a non-Newtonian fluid obeying the Casson fluid model. The pulsatile flow is analyzed by considering a periodic pressure gradient and the inertial effects as negligibly small. A suitable generalized geometry for time-dependent stenosis is taken into account. Perturbation method is used to solve the coupled implicit system of nonlinear differential equations that govern the flow of blood. Analytical expressions for the velocity profile, volumetric flow rate, and wall shear stress are obtained. A thorough quantitative analysis has been made through numerical computations of the variables involved in the analysis that are of special interest in this study. The computational results are presented graphically. The results for different values of the parameters involved in the problem under consideration presented here show that the flow is appreciably influenced by slip velocity in the presence of periodic body acceleration.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110316
Author(s):  
Salman Akhtar ◽  
Luthais B McCash ◽  
Sohail Nadeem ◽  
Salman Saleem ◽  
Alibek Issakhov

The electro-osmotically modulated hemodynamic across an artery with multiple stenosis is mathematically evaluated. The non-Newtonian behaviour of blood flow is tackled by utilizing Casson fluid model for this flow problem. The blood flow is confined in such arteries due to the presence of stenosis and this theoretical analysis provides the electro-osmotic effects for blood flow through such arteries. The mathematical equations that govern this flow problem are converted into their dimensionless form by using appropriate transformations and then exact mathematical computations are performed by utilizing Mathematica software. The range of the considered parameters is given as [Formula: see text]. The graphical results involve combine study of symmetric and non-symmetric structure for multiple stenosis. Joule heating effects are also incorporated in energy equation together with viscous effects. Streamlines are plotted for electro-kinetic parameter [Formula: see text] and flow rate [Formula: see text]. The trapping declines in size with incrementing [Formula: see text], for symmetric shape of stenosis. But the size of trapping increases for the non-symmetric case.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Khalid ◽  
Ilyas Khan ◽  
Sharidan Shafie

The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.


Biorheology ◽  
1975 ◽  
Vol 12 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Walter P. Walawender ◽  
Te Yu Chen ◽  
David F. Cala

2021 ◽  
Vol 5 (1) ◽  
pp. 16-26
Author(s):  
Winifred N. Mutuku ◽  
Anselm O. Oyem

This study presents a convectively heated hydromagnetic Stagnation-Point Flow (SPF) of an electrically conducting Casson fluid towards a vertically stretching/shrinking sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour and using similarity variables, the governing partial differential equations are transformed into coupled nonlinear ordinary differential equations. The dimensionless nonlinear equations are solved numerically by Runge-Kutta Fehlberg integration scheme with shooting technique. The effects of the thermophysical parameters on velocity and temperature profiles are presented graphically and discussed quantitatively. The result shows that the flow field velocity decreases with increase in magnetic field parameter and Casson fluid parameter .


Author(s):  
RADHAKRISHNAN BHEEMAN ◽  
Tamilarasi Mathivanan

This research is about the transfer of heat of a generalized fractional Casson fluid on an unsteady boundary layer which is passing through an infinite oscillating plate, in vertical direction combined with the Newtonian heating. The results are obtained by using modified Riemann-Liouville fractional derivative. The present fluid model, starts with the governing equations which are then converted to a system of partial differential equations(linear) by using some suitable non-dimensional variables. Using the method of integral balance and the Laplace transform technique, an analytical solution is obtained. The velocity and temperature expressions are derived and the effects of modelling parameters re shown in tables and graphs to validate the obtained theoretical results.


Author(s):  
Dzuliana Fatin Jamil ◽  
Salah Uddin ◽  
Muhamad Ghazali Kamardan ◽  
Rozaini Roslan

This paper investigates the magnetic blood flow in an inclined multi-stenosed artery under the influence of a uniformly distributed magnetic field and an oscillating pressure gradient. The blood is modelled using the non-Newtonian Casson fluid model. The governing fractional differential equations are expressed by using the fractional Caputo-Fabrizio derivative without singular kernel. Exact analytical solutions are obtained by using the Laplace and finite Hankel transforms for both velocities. The velocities of blood flow and magnetic particles are graphically presented. It shows that the velocity increases with respect to the Reynolds number and the Casson parameter. Meanwhile, the velocity decreases as the Hartmann number increases. These results are useful for the diagnosis and treatment of certain medical problems.


Sign in / Sign up

Export Citation Format

Share Document