casson fluid model
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ayesha Shaukat ◽  
Muhammad Mushtaq ◽  
Saadia Farid ◽  
Kanwal Jabeen ◽  
Rana Muhammad Akram Muntazir

The present research work scrutinizes numerical heat transfer in convective boundary layer flow having characteristics of magnetic ( Fe 3 O 4 ) and nonmagnetic ( Al 2 O 3 ) nanoparticles synthesized into two different kinds of Newtonian (water) and non-Newtonian (sodium alginate) convectional base fluids of casson nanofluid which integrates the captivating effects of nonlinear thermal radiation and magnetic field embedded in a porous medium. The characterization of electrically transmitted viscous incompressible fluid is taken into account within the Casson fluid model. The mathematical formulation of governing partial differential equations (PDEs) with highly nonlinearity is renovated into ordinary differential equations (ODEs) by utilizing the suitable similarity transform that constitutes nondimensional pertinent parameters. The transformed ODEs are tackled numerically by implementing b v p 4 c in MATLAB. A graphical illustration for the purpose of better numerical computations of flow regime is deliberated for the specified parameters corresponding to different profiles (velocity and temperature). To elaborate the behavior of Nusselt and skin friction factor, a tabular demonstration against the distinct specific parameters is analyzed. It is perceived that the velocity gradient of Newtonian fluids is much higher comparatively to non-newtonian fluids. On the contrary, the thermal gradient of non-Newtonian fluid becomes more condensed than that of Newtonian fluids. Graphical demonstration disclosed that the heat transfer analysis in non-Newtonian (sodium alginate)-based fluid is tremendously influenced comparatively to Newtonian (water)-based fluid, and radiation interacts with the highly denser temperature profile of non-Newtonian fluid in contrast to that of Newtonian fluid. Through such comparative analysis of magnetic or nonmagnetic nanoparticles synthesized into distinct base fluids, a considerable enhancement in thermal and heat transfer analysis is quite significant in many expanding engineering and industrial phenomenons.


2021 ◽  
Vol 10 (3) ◽  
pp. 372-379
Author(s):  
P. Sreedivya ◽  
Y. Sunitha Rani ◽  
R. Srinivasa Raju

The paramount importance of the current study has to deliberate nanoparticles for the Casson fluid model supposing Thermophoresis and Brownian motion associates Runge-Kutta fifth-order technique is applied to reduce the elements of non-linear regular difference calculations. Nondimensional physical parameters have appeared after utilization of correspondence alterations among with the design of connected normal difference omputations, where govern the performance of Nano-Casson fluid. Joined calculations are then attempted mathematically, also then the physical behaviour of individually element is exposed explicitly. Numerical consequences for Nusselt and Sherwood numbers through various engineering linked parameters are presented in tabular forms. Finally, program code validation is discussed. Where identified the velocity profiles are decreasing function of Casson fluid and Magnetic field parameters. Temperature is found as an advanced function for the effects of Brownian motion and Thermophoresis limitations. Also, the consequences show that growing of stretching limitation mains to a growth in the velocity distribution and Skin-friction coefficient, while a decrease in the temperature distribution and Nusselt number coefficient. A growth of the Thermophoresis parameter leads to increased nanoparticle volume concentration distribution and the Sherwood number coefficient.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110316
Author(s):  
Salman Akhtar ◽  
Luthais B McCash ◽  
Sohail Nadeem ◽  
Salman Saleem ◽  
Alibek Issakhov

The electro-osmotically modulated hemodynamic across an artery with multiple stenosis is mathematically evaluated. The non-Newtonian behaviour of blood flow is tackled by utilizing Casson fluid model for this flow problem. The blood flow is confined in such arteries due to the presence of stenosis and this theoretical analysis provides the electro-osmotic effects for blood flow through such arteries. The mathematical equations that govern this flow problem are converted into their dimensionless form by using appropriate transformations and then exact mathematical computations are performed by utilizing Mathematica software. The range of the considered parameters is given as [Formula: see text]. The graphical results involve combine study of symmetric and non-symmetric structure for multiple stenosis. Joule heating effects are also incorporated in energy equation together with viscous effects. Streamlines are plotted for electro-kinetic parameter [Formula: see text] and flow rate [Formula: see text]. The trapping declines in size with incrementing [Formula: see text], for symmetric shape of stenosis. But the size of trapping increases for the non-symmetric case.


Author(s):  
RADHAKRISHNAN BHEEMAN ◽  
Tamilarasi Mathivanan

This research is about the transfer of heat of a generalized fractional Casson fluid on an unsteady boundary layer which is passing through an infinite oscillating plate, in vertical direction combined with the Newtonian heating. The results are obtained by using modified Riemann-Liouville fractional derivative. The present fluid model, starts with the governing equations which are then converted to a system of partial differential equations(linear) by using some suitable non-dimensional variables. Using the method of integral balance and the Laplace transform technique, an analytical solution is obtained. The velocity and temperature expressions are derived and the effects of modelling parameters re shown in tables and graphs to validate the obtained theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ndolane Senea

In this paper, we present a class of numerical schemes and apply it to the diffusion equations. The objective is to obtain numerical solutions of the constructive equations of a type of Casson fluid model. We investigate the solutions of the free convection flow of the Casson fluid along with heat and mass transfer in the context of modeling with the fractional operators. The numerical scheme presented in this paper is called the fractional version of the Adams Basford numerical procedure. The advantage of this numerical technique is that it combines the Laplace transforms and the classical Adams Basford numerical procedure. Note that the usage of the Laplace transforms makes possible the applicability of the numerical approach to diffusion equations in general. The Caputo derivative will be used in the investigations. The influence of the considered Casson fluid model parameters as the Prandtl number Pr , the Schmidt number Sc , the material parameter of the Casson fluid β , and the order of the Caputo fractional derivative on the dynamics of the temperature, concentration, and velocity profiles has been presented analyzed. Graphical representations have supported the results of the paper.


2021 ◽  
Vol 5 (1) ◽  
pp. 16-26
Author(s):  
Winifred N. Mutuku ◽  
Anselm O. Oyem

This study presents a convectively heated hydromagnetic Stagnation-Point Flow (SPF) of an electrically conducting Casson fluid towards a vertically stretching/shrinking sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour and using similarity variables, the governing partial differential equations are transformed into coupled nonlinear ordinary differential equations. The dimensionless nonlinear equations are solved numerically by Runge-Kutta Fehlberg integration scheme with shooting technique. The effects of the thermophysical parameters on velocity and temperature profiles are presented graphically and discussed quantitatively. The result shows that the flow field velocity decreases with increase in magnetic field parameter and Casson fluid parameter .


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
N. Thamaraikannan ◽  
S. Karthikeyan ◽  
Dinesh Kumar Chaudhary

The effect of various parameters in the unsteady pulsating flow of radiative hydromagnetic Casson nanofluid through a porous channel is investigated. The governing equations were nondimensionalized by applying suitable transformations. The perturbation technique was employed to solve the resulting similarity equations. The velocity and temperature fields are illustrated for several pertinent flow parameters. The fluid velocity has been enhancing for higher values of the frequency parameter, Casson fluid parameter, nanoparticle volume fraction, and Darcy number. The reverse impact is observed for larger values of the Hartmann number. The result reveals that adding the nanoparticles has enhanced the heat transfer of the base fluid as the nanoparticles increase the heat conductivity. Furthermore, it is noticed that the temperature profile decreases rapidly for higher values of the cross Reynolds number and the radiation parameter. Finally, an excellent agreement between the current results and previous results is obtained by comparing with the available limiting results in the literature.


Author(s):  
Dzuliana Fatin Jamil ◽  
Salah Uddin ◽  
Muhamad Ghazali Kamardan ◽  
Rozaini Roslan

This paper investigates the magnetic blood flow in an inclined multi-stenosed artery under the influence of a uniformly distributed magnetic field and an oscillating pressure gradient. The blood is modelled using the non-Newtonian Casson fluid model. The governing fractional differential equations are expressed by using the fractional Caputo-Fabrizio derivative without singular kernel. Exact analytical solutions are obtained by using the Laplace and finite Hankel transforms for both velocities. The velocities of blood flow and magnetic particles are graphically presented. It shows that the velocity increases with respect to the Reynolds number and the Casson parameter. Meanwhile, the velocity decreases as the Hartmann number increases. These results are useful for the diagnosis and treatment of certain medical problems.


Sign in / Sign up

Export Citation Format

Share Document