scholarly journals A Casson Fluid Model for Multiple Stenosed Artery in the Presence of Magnetic Field

2012 ◽  
Vol 03 (05) ◽  
pp. 436-441 ◽  
Author(s):  
Rekha Bali ◽  
Usha Awasthi
Author(s):  
Dzuliana Fatin Jamil ◽  
Salah Uddin ◽  
Muhamad Ghazali Kamardan ◽  
Rozaini Roslan

This paper investigates the magnetic blood flow in an inclined multi-stenosed artery under the influence of a uniformly distributed magnetic field and an oscillating pressure gradient. The blood is modelled using the non-Newtonian Casson fluid model. The governing fractional differential equations are expressed by using the fractional Caputo-Fabrizio derivative without singular kernel. Exact analytical solutions are obtained by using the Laplace and finite Hankel transforms for both velocities. The velocities of blood flow and magnetic particles are graphically presented. It shows that the velocity increases with respect to the Reynolds number and the Casson parameter. Meanwhile, the velocity decreases as the Hartmann number increases. These results are useful for the diagnosis and treatment of certain medical problems.


Author(s):  
Sachin Shaw ◽  
P. V. S. N. Murthy

The present investigation deals with magnetic drug targeting in a microvessel of radius 5 μm using two-phase fluid model. The microvessel is divided into the endothelial glycocalyx layer wherein the blood obeys Newtonian character and a core region wherein the blood obeys the non-Newtonian Casson fluid character. The carrier particles, bound with nanoparticles and drug molecules, are injected into the vascular system upstream from the malignant tissue and are captured at the tumor site using a local applied magnetic field near the tumor position. Brinkman model is used to characterize the permeable nature of the inner wall of the microvessel. The expressions for the fluidic force for the carrier particle traversing in the two-phase fluid in the microvessel and the magnetic force due to the external magnetic field are obtained. Several factors that influence the magnetic targeting of the carrier particles in the microvasculature, such as the size and shape of the carrier particle, the volume fraction of embedded magnetic nanoparticles, and the distance of separation of the magnet from the axis of the microvessel, are considered in the present problem. The system of coupled equations is solved to obtain the trajectories of the carrier particle in the noninvasive case.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
J. Venkatesan ◽  
D. S. Sankar ◽  
K. Hemalatha ◽  
Yazariah Yatim

The flow of blood through a narrow artery with bell-shaped stenosis is investigated, treating blood as Casson fluid. Present results are compared with the results of the Herschel-Bulkley fluid model obtained by Misra and Shit (2006) for the same geometry. Resistance to flow and skin friction are normalized in two different ways such as (i) with respect to the same non-Newtonian fluid in a normal artery which gives the effect of a stenosis and (ii) with respect to the Newtonian fluid in the stenosed artery which spells out the non-Newtonian effects of the fluid. It is found that the resistance to flow and skin friction increase with the increase of maximum depth of the stenosis, but these flow quantities (when normalized with non-Newtonian fluid in normal artery) decrease with the increase of the yield stress, as obtained by Misra and Shit (2006). It is also noticed that the resistance to flow and skin friction increase (when normalized with Newtonian fluid in stenosed artery) with the increase of the yield stress.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110316
Author(s):  
Salman Akhtar ◽  
Luthais B McCash ◽  
Sohail Nadeem ◽  
Salman Saleem ◽  
Alibek Issakhov

The electro-osmotically modulated hemodynamic across an artery with multiple stenosis is mathematically evaluated. The non-Newtonian behaviour of blood flow is tackled by utilizing Casson fluid model for this flow problem. The blood flow is confined in such arteries due to the presence of stenosis and this theoretical analysis provides the electro-osmotic effects for blood flow through such arteries. The mathematical equations that govern this flow problem are converted into their dimensionless form by using appropriate transformations and then exact mathematical computations are performed by utilizing Mathematica software. The range of the considered parameters is given as [Formula: see text]. The graphical results involve combine study of symmetric and non-symmetric structure for multiple stenosis. Joule heating effects are also incorporated in energy equation together with viscous effects. Streamlines are plotted for electro-kinetic parameter [Formula: see text] and flow rate [Formula: see text]. The trapping declines in size with incrementing [Formula: see text], for symmetric shape of stenosis. But the size of trapping increases for the non-symmetric case.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Khalid ◽  
Ilyas Khan ◽  
Sharidan Shafie

The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.


Biorheology ◽  
1975 ◽  
Vol 12 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Walter P. Walawender ◽  
Te Yu Chen ◽  
David F. Cala

2021 ◽  
Vol 5 (1) ◽  
pp. 16-26
Author(s):  
Winifred N. Mutuku ◽  
Anselm O. Oyem

This study presents a convectively heated hydromagnetic Stagnation-Point Flow (SPF) of an electrically conducting Casson fluid towards a vertically stretching/shrinking sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour and using similarity variables, the governing partial differential equations are transformed into coupled nonlinear ordinary differential equations. The dimensionless nonlinear equations are solved numerically by Runge-Kutta Fehlberg integration scheme with shooting technique. The effects of the thermophysical parameters on velocity and temperature profiles are presented graphically and discussed quantitatively. The result shows that the flow field velocity decreases with increase in magnetic field parameter and Casson fluid parameter .


Sign in / Sign up

Export Citation Format

Share Document