scholarly journals Forcing-dependent dynamics and emergence of helicity in rotating turbulence

2016 ◽  
Vol 798 ◽  
pp. 682-695 ◽  
Author(s):  
Vassilios Dallas ◽  
Steven M. Tobias

The effects of large-scale mechanical forcing on the dynamics of rotating turbulent flows are studied by means of direct numerical simulations, systematically varying the nature of the mechanical force in time. We find that the statistically stationary solutions of these flows depend on the nature of the forcing mechanism. Rapidly enough rotating flows with a forcing that has a persistent direction relative to the axis of rotation bifurcate from a non-helical state to a helical state despite the fact that the forcing is non-helical. We demonstrate that the nature of the mechanical force in time and the emergence of helicity have direct implications for the cascade dynamics of these flows, determining the anisotropy in the flow, the energy condensation at large scales and the power-law energy spectra that are consistent with previous findings and phenomenologies under strong and weak turbulence.

2022 ◽  
Vol 933 ◽  
Author(s):  
C. Chen ◽  
L. He

Recent findings on wall-bounded turbulence have prompted a new impetus for modelling development to capture and resolve the Reynolds-number-dependent influence of outer flow on near-wall turbulence in terms of the ‘foot-printing’ of the large-scale coherent structures and the scale-interaction associated ‘modulation’. We develop a two-scale method to couple a locally embedded near-wall fine-mesh direct numerical simulation (DNS) block with a global coarser mesh domain. The influence of the large-scale structures on the local fine-mesh block is captured by a scale-dependent coarse–fine domain interface treatment. The coarse-mesh resolved disturbances are directly exchanged across the interface, while only the fine-mesh resolved fluctuations around the coarse-mesh resolved variables are subject to periodic conditions in the streamwise and spanwise directions. The global near-wall coarse-mesh region outside the local fine-mesh block is governed by the augmented flow governing equations with forcing source terms generated by upscaling the space–time-averaged fine-mesh solution. The validity and effectiveness of the method are examined for canonical incompressible channel flows at several Reynolds numbers. The mean statistics and energy spectra are in good agreement with the corresponding full DNS data. The results clearly illustrate the ‘foot-printing’ and ‘modulation’ in the local fine-mesh block. Noteworthy also is that neither spectral-gap nor scale-separation is assumed, and a smooth overlap between the global-domain and the local-domain energy spectra is observed. It is shown that the mesh-count scaling with Reynolds number is potentially reduced from $O(R{e^2})$ for the conventional fully wall-resolved large-eddy simulation (LES) to $O(Re)$ for the present locally embedded two-scale LES.


2018 ◽  
Vol 841 ◽  
pp. 434-462 ◽  
Author(s):  
Kannabiran Seshasayanan ◽  
Alexandros Alexakis

Using a large number of numerical simulations we examine the steady state of rotating turbulent flows in triple periodic domains, varying the Rossby number $Ro$ (that measures the inverse rotation rate) and the Reynolds number $Re$ (that measures the strength of turbulence). The examined flows are sustained by either a helical or a non-helical Roberts force, that is invariant along the axis of rotation. The forcing acts at a wavenumber $k_{f}$ such that $k_{f}L=4$, where $2\unicode[STIX]{x03C0}L$ is the size of the domain. Different flow behaviours were obtained as the parameters are varied. Above a critical rotation rate the flow becomes quasi-two-dimensional and transfers energy to the largest scales of the system, forming large coherent structures known as condensates. We examine the behaviour of these condensates and their scaling properties close to and away from this critical rotation rate. Close to the critical rotation rate the system transitions supercritically to the condensate state, displaying a bimodal behaviour oscillating randomly between an incoherent-turbulent state and a condensate state. Away from the critical rotation rate, it is shown that two distinct mechanisms can saturate the growth of the large-scale energy. The first mechanism is due to viscous forces and is similar to the saturation mechanism observed for the inverse cascade in two-dimensional flows. The second mechanism is independent of viscosity and relies on the breaking of the two-dimensionalization condition of the rotating flow. The two mechanisms predict different scaling with respect to the control parameters of the system (Rossby and Reynolds), which are tested with the present results of the numerical simulations. A phase space diagram in the $Re,Ro$ parameter plane is sketched.


Author(s):  
Yanzhe Sun ◽  
Kai Sun ◽  
Tianyou Wang ◽  
Yufeng Li ◽  
Zhen Lu

Emission and fuel consumption in swirl-supported diesel engines strongly depend on the in-cylinder turbulent flows. But the physical effects of squish flow on the tangential flow and turbulence production are still far from well understood. To identify the effects of squish flow, Particle image velocimetry (PIV) experiments are performed in a motored optical diesel engine equipped with different bowls. By comparing and associating the large-scale flow and turbulent kinetic energy (k), the main effects of the squish flow are clarified. The effect of squish flow on the turbulence production in the r−θ plane lies in the axial-asymmetry of the annular distribution of radial flow and the deviation between the ensemble-averaged swirl field and rigid body swirl field. Larger squish flow could promote the swirl center to move to the cylinder axis and reduce the deformation of swirl center, which could decrease the axial-asymmetry of annular distribution of radial flow, further, that results in a lower turbulence production of the shear stress. Moreover, larger squish flow increases the radial fluctuation velocity which makes a similar contribution to k with the tangential component. The understanding of the squish flow and its correlations with tangential flow and turbulence obtained in this study is beneficial to design and optimize the in-cylinder turbulent flow.


2012 ◽  
Vol 24 (5) ◽  
pp. 055112 ◽  
Author(s):  
Adrian Zenklusen ◽  
Simon Kuhn ◽  
Philipp Rudolf von Rohr

2021 ◽  
Author(s):  
Christina Tsai ◽  
Kuang-Ting Wu

<p>It is demonstrated that turbulent boundary layers are populated by a hierarchy of recurrent structures, normally referred to as the coherent structures. Thus, it is desirable to gain a better understanding of the spatial-temporal characteristics of coherent structures and their impact on fluid particles. Furthermore, the ejection and sweep events play an important role in turbulent statistics. Therefore, this study focuses on the characterizations of flow particles under the influence of the above-mentioned two structures.</p><div><span>With regard to the geometry of turbulent structures, </span><span>Meinhart & Adrian (1995) </span>first highlighted the existence of large and irregularly shaped regions of uniform streamwise momentum zone (hereafter referred to as a uniform momentum zone, or UMZs), regions of relatively similar streamwise velocity with coherence in the streamwise and wall-normal directions.  <span>Subsequently, </span><span>de Silva et al. (2017) </span><span>provided a detection criterion that had previously been utilized to locate the uniform momentum zones (UMZ) and demonstrated the application of this criterion to estimate the spatial locations of the edges that demarcates UMZs.</span></div><div> </div><div>In this study, detection of the existence of UMZs is a pre-process of identifying the coherent structures. After the edges of UMZs are determined, the identification procedure of ejection and sweep events from turbulent flow DNS data should be defined. As such, an integrated criterion of distinguishing ejection and sweep events is proposed. Based on the integrated criterion, the statistical characterizations of coherent structures from available turbulent flow data such as event durations, event maximum heights, and wall-normal and streamwise lengths can be presented.</div>


1986 ◽  
Vol 163 ◽  
pp. 227-256 ◽  
Author(s):  
F. O. Thomas ◽  
V. W. Goldschmidt

An experimental study of the developing structural characteristics of a two-dimensional jet in an extremely quiet environment was performed. The jet, at an exit Reynolds number of 6000 and with fluctuation intensity under 0.2% at the mouth, was operated within a large anechoic room. Measurements of energy spectra, fluctuation phase angles and two-dimensionality led to the inference of structural patterns in the flow. These patterns are initially characterized by relatively strong symmetric modes exhibiting limited two-dimensionality and oriented parallel to the mouth of the jet. Subsequent downstream evolution led to the formation of an antisymmetric pattern beyond the jet potential core and the associated development of extended structures possessing a definite large lateral inclination. The results of this work suggest a developing large-scale structural pattern more complicated than previously supposed.


2000 ◽  
Vol 61 (6) ◽  
pp. 6572-6577 ◽  
Author(s):  
Norbert Schorghofer

2016 ◽  
Vol 144 (4) ◽  
pp. 1407-1421 ◽  
Author(s):  
Michael L. Waite

Abstract Many high-resolution atmospheric models can reproduce the qualitative shape of the atmospheric kinetic energy spectrum, which has a power-law slope of −3 at large horizontal scales that shallows to approximately −5/3 in the mesoscale. This paper investigates the possible dependence of model energy spectra on the vertical grid resolution. Idealized simulations forced by relaxation to a baroclinically unstable jet are performed for a wide range of vertical grid spacings Δz. Energy spectra are converged for Δz 200 m but are very sensitive to resolution with 500 m ≤ Δz ≤ 2 km. The nature of this sensitivity depends on the vertical mixing scheme. With no vertical mixing or with weak, stability-dependent mixing, the mesoscale spectra are artificially amplified by low resolution: they are shallower and extend to larger scales than in the converged simulations. By contrast, vertical hyperviscosity with fixed grid-scale damping rate has the opposite effect: underresolved spectra are spuriously steepened. High-resolution spectra are converged except for the stability-dependent mixing case, which are damped by excessive mixing due to enhanced shear over a wide range of horizontal scales. It is shown that converged spectra require resolution of all vertical scales associated with the resolved horizontal structures: these include quasigeostrophic scales for large-scale motions with small Rossby number and the buoyancy scale for small-scale motions at large Rossby number. It is speculated that some model energy spectra may be contaminated by low vertical resolution, and it is recommended that vertical-resolution sensitivity tests always be performed.


Sign in / Sign up

Export Citation Format

Share Document