scholarly journals On locally embedded two-scale solution for wall-bounded turbulent flows

2022 ◽  
Vol 933 ◽  
Author(s):  
C. Chen ◽  
L. He

Recent findings on wall-bounded turbulence have prompted a new impetus for modelling development to capture and resolve the Reynolds-number-dependent influence of outer flow on near-wall turbulence in terms of the ‘foot-printing’ of the large-scale coherent structures and the scale-interaction associated ‘modulation’. We develop a two-scale method to couple a locally embedded near-wall fine-mesh direct numerical simulation (DNS) block with a global coarser mesh domain. The influence of the large-scale structures on the local fine-mesh block is captured by a scale-dependent coarse–fine domain interface treatment. The coarse-mesh resolved disturbances are directly exchanged across the interface, while only the fine-mesh resolved fluctuations around the coarse-mesh resolved variables are subject to periodic conditions in the streamwise and spanwise directions. The global near-wall coarse-mesh region outside the local fine-mesh block is governed by the augmented flow governing equations with forcing source terms generated by upscaling the space–time-averaged fine-mesh solution. The validity and effectiveness of the method are examined for canonical incompressible channel flows at several Reynolds numbers. The mean statistics and energy spectra are in good agreement with the corresponding full DNS data. The results clearly illustrate the ‘foot-printing’ and ‘modulation’ in the local fine-mesh block. Noteworthy also is that neither spectral-gap nor scale-separation is assumed, and a smooth overlap between the global-domain and the local-domain energy spectra is observed. It is shown that the mesh-count scaling with Reynolds number is potentially reduced from $O(R{e^2})$ for the conventional fully wall-resolved large-eddy simulation (LES) to $O(Re)$ for the present locally embedded two-scale LES.

Author(s):  
W. J. Baars ◽  
N. Hutchins ◽  
I. Marusic

Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’.


2012 ◽  
Vol 704 ◽  
pp. 137-172 ◽  
Author(s):  
G. Brethouwer ◽  
Y. Duguet ◽  
P. Schlatter

AbstractDirect numerical simulations of subcritical rotating, stratified and magneto-hydrodynamic wall-bounded flows are performed in large computational domains, focusing on parameters where laminar and turbulent flow can stably coexist. In most cases, a regime of large-scale oblique laminar-turbulent patterns is identified at the onset of transition, as in the case of pure shear flows. The current study indicates that this oblique regime can be shifted up to large values of the Reynolds number $\mathit{Re}$ by increasing the damping by the Coriolis, buoyancy or Lorentz force. We show evidence for this phenomenon in three distinct flow cases: plane Couette flow with spanwise cyclonic rotation, plane magnetohydrodynamic channel flow with a spanwise or wall-normal magnetic field, and open channel flow under stable stratification. Near-wall turbulence structures inside the turbulent patterns are invariably found to scale in terms of viscous wall units as in the fully turbulent case, while the patterns themselves remain large-scale with a trend towards shorter wavelength for increasing $\mathit{Re}$. Two distinct regimes are identified: at low Reynolds numbers the patterns extend from one wall to the other, while at large Reynolds number they are confined to the near-wall regions and the patterns on both channel sides are uncorrelated, the core of the flow being highly turbulent without any dominant large-scale structure.


Author(s):  
Nicholas Hutchins ◽  
Ivan Marusic

Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.


Author(s):  
Sachin S. Badarayani ◽  
Kyle D. Squires

Large Eddy Simulation (LES) of high-Reynolds-number wall-bounded turbulent flows is prohibitively expensive if the energy-containing eddies in the near-wall region are resolved. This motivates the use of wall-layer models in which an approximate solution of the near wall dynamics is bridged to an LES of the outer flow. The main interest of the present work are wall-modeling strategies based on Detached Eddy Simulation (DES). In these approaches, the near-wall solution is closed using a Reynolds-averaged Navier Stokes model with a subgrid closure applied to the outer flow. As is well known, the original DES formulation applied directly as a wall model results in a shift in the velocity profile, corresponding to an under-estimation of the skin friction. A new formulation is proposed in this contribution in which the wall-parallel components of the modeled stress are reduced in order to lower the influence of the model and increase the resolved stress. The effectiveness of the new model is evaluated via comparison against DES predictions using the original and recently-proposed versions of the method. The effect of grid resolution and model parameters are also assessed using computations of turbulent channel flow at a Reynolds number based on friction velocity and channel halfwidth of 5000. The predictions show that the anisotropic form of the model stress yields an improved prediction of the mean velocity profile in better agreement with the logarithmic law and with larger resolved stress in the near-wall region.


2009 ◽  
Vol 628 ◽  
pp. 311-337 ◽  
Author(s):  
ROMAIN MATHIS ◽  
NICHOLAS HUTCHINS ◽  
IVAN MARUSIC

In this paper we investigate the relationship between the large- and small-scale energy-containing motions in wall turbulence. Recent studies in a high-Reynolds-number turbulent boundary layer (Hutchins & Marusic, Phil. Trans. R. Soc. Lond. A, vol. 365, 2007a, pp. 647–664) have revealed a possible influence of the large-scale boundary-layer motions on the small-scale near-wall cycle, akin to a pure amplitude modulation. In the present study we build upon these observations, using the Hilbert transformation applied to the spectrally filtered small-scale component of fluctuating velocity signals, in order to quantify the interaction. In addition to the large-scale log-region structures superimposing a footprint (or mean shift) on the near-wall fluctuations (Townsend, The Structure of Turbulent Shear Flow, 2nd edn., 1976, Cambridge University Press; Metzger & Klewicki, Phys. Fluids, vol. 13, 2001, pp. 692–701.), we find strong supporting evidence that the small-scale structures are subject to a high degree of amplitude modulation seemingly originating from the much larger scales that inhabit the log region. An analysis of the Reynolds number dependence reveals that the amplitude modulation effect becomes progressively stronger as the Reynolds number increases. This is demonstrated through three orders of magnitude in Reynolds number, from laboratory experiments at Reτ ~ 103–104 to atmospheric surface layer measurements at Reτ ~ 106.


Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


2012 ◽  
Vol 550-553 ◽  
pp. 2014-2018
Author(s):  
Xiao Lan Zhou ◽  
Cai Xi Liu ◽  
Yu Hong Dong

Electrochemical mass transfer in turbulent flows and binary electrolytes is investigated. The primary objective is to provide information about mass transfer in the near-wall region between a solid boundary and a turbulent fluid flow at different Schmidt numbers. Based on the computational fluid dynamics and electrochemistry theories, a model for turbulent electrodes channel flow is established. The turbulent mass transfer in electrolytic processes has been predicted by the direct numerical simulation method under limiting current and galvanostatic conditions, we investigate mean concentration and the structure of the concentration fluctuating filed for different Schmidt numbers from 0.1 to 100 .The effect of different concentration boundary conditions at the electrodes on the near-wall turbulence statistics is also discussed.


2011 ◽  
Vol 670 ◽  
pp. 176-203 ◽  
Author(s):  
JU ZHANG ◽  
THOMAS L. JACKSON

Incompressible turbulent flow in a periodic circular pipe with strong injection is studied as a simplified model for the core flow in a solid-propellant rocket motor and other injection-driven internal flows. The model is based on a multi-scale asymptotic approach. The intended application of the current study is erosive burning of solid propellants. Relevant analysis for easily accessible parameters for this application, such as the magnitudes, main frequencies and wavelengths associated with the near-wall shear, and the assessment of near-wall turbulence viscosity is focused on. It is found that, unlike flows with weak or no injection, the near-wall shear is dominated by the root mean square of the streamwise velocity which is a function of the Reynolds number, while the mean streamwise velocity is only weakly dependent on the Reynolds number. As a result, a new wall-friction velocity $\(u_\tau{\,=\,}\sqrt{\tau_w/\rho}\)$, based on the shear stress derived from the sum of the mean and the root mean square, i.e. $\(\tau_{w,inj} {\,=\,} \mu |{\partial (\bar{u}+u_{rms})}/{\partial r}|_w\)$, is proposed for the scaling of turbulent viscosity for turbulent flows with strong injection. We also show that the mean streamwise velocity profile has an inflection point near the injecting surface.


The time-dependent structure of the wall region of separating, separated, and reattaching flows is considerably different than that of attached turbulent boundary layers. Large-scale structures, whose frequency of passage scales on the freestream velocity and shear layer thickness, produce large Reynolds shearing stresses and most of the turbulence kinetic energy in the outer region of the shear layer and transport it into the low velocity reversed flow next to the wall. This outer flow impresses a near wall streamwise streaky structure of spanwise spacing λ z simultaneously across the wall over a distance of the order of several λ z . The near wall structures produce negligible Reynolds shear stresses and turbulence kinetic energy.


2012 ◽  
Vol 699 ◽  
pp. 50-78 ◽  
Author(s):  
G. Sardina ◽  
P. Schlatter ◽  
L. Brandt ◽  
F. Picano ◽  
C. M. Casciola

AbstractWe study the two main phenomenologies associated with the transport of inertial particles in turbulent flows, turbophoresis and small-scale clustering. Turbophoresis describes the turbulence-induced wall accumulation of particles dispersed in wall turbulence, while small-scale clustering is a form of local segregation that affects the particle distribution in the presence of fine-scale turbulence. Despite the fact that the two aspects are usually addressed separately, this paper shows that they occur simultaneously in wall-bounded flows, where they represent different aspects of the same process. We study these phenomena by post-processing data from a direct numerical simulation of turbulent channel flow with different populations of inertial particles. It is shown that artificial domain truncation can easily alter the mean particle concentration profile, unless the domain is large enough to exclude possible correlation of the turbulence and the near-wall particle aggregates. The data show a strong link between accumulation level and clustering intensity in the near-wall region. At statistical steady state, most accumulating particles aggregate in strongly directional and almost filamentary structures, as found by considering suitable two-point observables able to extract clustering intensity and anisotropy. The analysis provides quantitative indications of the wall-segregation process as a function of the particle inertia. It is shown that, although the most wall-accumulating particles are too heavy to segregate in homogeneous turbulence, they exhibit the most intense local small-scale clustering near the wall as measured by the singularity exponent of the particle pair correlation function.


Sign in / Sign up

Export Citation Format

Share Document