Large-eddy simulation of flow over a rotating cylinder: the lift crisis at

2018 ◽  
Vol 855 ◽  
pp. 371-407 ◽  
Author(s):  
W. Cheng ◽  
D. I. Pullin ◽  
R. Samtaney

We present wall-resolved large-eddy simulation (LES) of flow with free-stream velocity $\boldsymbol{U}_{\infty }$ over a cylinder of diameter $D$ rotating at constant angular velocity $\unicode[STIX]{x1D6FA}$ , with the focus on the lift crisis, which takes place at relatively high Reynolds number $Re_{D}=U_{\infty }D/\unicode[STIX]{x1D708}$ , where $\unicode[STIX]{x1D708}$ is the kinematic viscosity of the fluid. Two sets of LES are performed within the ( $Re_{D}$ , $\unicode[STIX]{x1D6FC}$ )-plane with $\unicode[STIX]{x1D6FC}=\unicode[STIX]{x1D6FA}D/(2U_{\infty })$ the dimensionless cylinder rotation speed. One set, at $Re_{D}=5000$ , is used as a reference flow and does not exhibit a lift crisis. Our main LES varies $\unicode[STIX]{x1D6FC}$ in $0\leqslant \unicode[STIX]{x1D6FC}\leqslant 2.0$ at fixed $Re_{D}=6\times 10^{4}$ . For $\unicode[STIX]{x1D6FC}$ in the range $\unicode[STIX]{x1D6FC}=0.48{-}0.6$ we find a lift crisis. This range is in agreement with experiment although the LES shows a deeper local minimum in the lift coefficient than the measured value. Diagnostics that include instantaneous surface portraits of the surface skin-friction vector field $\boldsymbol{C}_{\boldsymbol{f}}$ , spanwise-averaged flow-streamline plots, and a statistical analysis of local, near-surface flow reversal show that, on the leeward-bottom cylinder surface, the flow experiences large-scale reorganization as $\unicode[STIX]{x1D6FC}$ increases through the lift crisis. At $\unicode[STIX]{x1D6FC}=0.48$ the primary-flow features comprise a shear layer separating from that side of the cylinder that moves with the free stream and a pattern of oscillatory but largely attached flow zones surrounded by scattered patches of local flow separation/reattachment on the lee and underside of the cylinder surface. Large-scale, unsteady vortex shedding is observed. At $\unicode[STIX]{x1D6FC}=0.6$ the flow has transitioned to a more ordered state where the small-scale separation/reattachment cells concentrate into a relatively narrow zone with largely attached flow elsewhere. This induces a low-pressure region which produces a sudden decrease in lift and hence the lift crisis. Through this process, the boundary layer does not show classical turbulence behaviour. As $\unicode[STIX]{x1D6FC}$ is further increased at constant $Re_{D}$ , the localized separation zone dissipates with corresponding attached flow on most of the cylinder surface. The lift coefficient then resumes its increasing trend. A logarithmic region is found within the boundary layer at $\unicode[STIX]{x1D6FC}=1.0$ .

2007 ◽  
Vol 64 (12) ◽  
pp. 4445-4457 ◽  
Author(s):  
M. Antonelli ◽  
R. Rotunno

Abstract This paper describes results from a large-eddy simulation (LES) model used in an idealized setting to simulate the onset of the sea breeze. As the LES is capable of simulating boundary layer–scale, three-dimensional turbulence along with the mesoscale sea-breeze circulation, a parameterization of the planetary boundary layer was unnecessary. The basic experimental design considers a rotating, uniformly stratified, resting atmosphere that is suddenly heated at the surface over the “land” half of the domain. To focus on the simplest nontrivial problem, the diurnal cycle, effects of moisture, interactions with large-scale winds, and coastline curvature were all neglected in this study. The assumption of a straight coastline allows the use of a rectangular computational domain that extends to 50 km on either side of the coast, but only 5 km along the coast, with 100-m grid intervals so that the small-scale turbulent convective eddies together with the mesoscale sea breeze may be accurately computed. Through dimensional analysis of the simulation results, the length and velocity scales characterizing the simulated sea breeze as functions of the externally specified parameters are identified.


Author(s):  
Takashi Takata ◽  
Akira Yamaguchi ◽  
Masaaki Tanaka ◽  
Hiroyuki Ohshima

Turbulent statistics near a structural surface, such as a magnitude of temperature fluctuation and its frequency characteristic, play an important role in damage progression due to thermal stress. A Large Eddy Simulation (LES) has an advantage to obtain the turbulent statistics especially in terms of the frequency characteristic. However, it still needs a great number of computational cells near a wall. In the present paper, a two-layer approach based on boundary layer approximation is extended to an energy equation so that a low computational cost is achieved even in a large-scale LES analysis to obtain the near wall turbulent statistics. The numerical examinations are carried out based on a plane channel flow with constant heat generation. The friction Reynolds numbers (Reτ) of 395 and 10,000 are investigated, while the Prandtl number (Pr) is set to 0.71 in each analysis. It is demonstrated that the present method is cost-effective for a large-scale LES analysis.


Author(s):  
A. RINOSHIKA ◽  
Y. ZHENG ◽  
E. SHISHIDO

The three-dimensional orthogonal wavelet multi-resolution technique was applied to analyze flow structures of various scales around an externally mounted vehicle mirror. Firstly, the three-dimensional flow of mirror wake was numerically analyzed at a Reynolds number of 105 by using the large-eddy simulation (LES). Then the instantaneous velocity and vorticity were decomposed into the large-, intermediate- and relatively small-scale components by the wavelet multi-resolution technique. It was found that a three-dimensional large-scale vertical vortex dominates the mirror wake flow and makes a main contribution to vorticity concentration. Some intermediate- and relatively small-scale vortices were extracted from the LES and were clearly identifiable.


Author(s):  
Mohammad Khalid Hossen ◽  
Asokan Mulayath Variyath ◽  
Jahrul M Alam

In large eddy simulation (LES) of turbulent flows, the most critical dynamical processes to be considered by dynamic subgrid models to account for an average cascade of kinetic energy from the largest to the smallest scales of the flow is not fully clear. Furthermore, evidence of vortex stretching being the primary mechanism of the cascade is not out of the question. In this article, we study some essential statistical characteristics of vortex stretching and its role in dynamic approaches of modeling subgrid-scale turbulence. We have compared the interaction of subgrid stresses with the filtered quantities among four models using invariants of the velocity gradient tensor. This technique is a single unified approach to studying a wide range of length scales in the turbulent flow. In addition, it also provides a rational basis for the statistical characteristics a subgrid model must serve in physical space to ensure an appropriate cascade of kinetic energy. Results indicate that the stretching mechanism extracts energy from the large-scale straining motion and passes it onto small-scale stretched vortices.


2020 ◽  
Author(s):  
Yangze Ren ◽  
Huiwen Xue

<p>Cloud feedback in mid-latitude marine stratocumulus is not clearly understood due to few reliable observations. Stratocumulus cloud is the most frequent and extensive cloud type over mid-latitude marine areas and has strong short-wave radiative effect. In this study, large eddy simulation (LES) is used to resolve the vertical structure of mid-latitude marine stratocumulus. We find that, in the wintertime over North Pacific, stratocumulus cloud often forms in regions of high pressure and large-scale sinking motion, and can remain in steady-state for a couple of days. We then choose two typical cases to do LES simulation: One has a lower cloud top height and a stronger temperature inversion (case l), without mesoscale cellular structure; the other has a higher cloud top height and a weaker temperature inversion (case h), with closed-cell cellular structure. The liquid water content profiles are adiabatic, and the boundary layer is well-mixed for both cases. In case l, the main source of turbulent kinetic energy (TKE) is from cloud top long-wave radiative cooling for the entire boundary layer. In case h, TKE production due to cloud-top longwave cooling is only significant in the cloud layer, and the subcloud layer TKE is mainly from surface processes.</p>


1992 ◽  
Vol 238 ◽  
pp. 325-336 ◽  
Author(s):  
M. Germano

Explicit or implicit filtered representations of chaotic fields like spectral cut-offs or numerical discretizations are commonly used in the study of turbulence and particularly in the so-called large-eddy simulations. Peculiar to these representations is that they are produced by different filtering operators at different levels of resolution, and they can be hierarchically organized in terms of a characteristic parameter like a grid length or a spectral truncation mode. Unfortunately, in the case of a general implicit or explicit filtering operator the Reynolds rules of the mean are no longer valid, and the classical analysis of the turbulence in terms of mean values and fluctuations is not so simple.In this paper a new operatorial approach to the study of turbulence based on the general algebraic properties of the filtered representations of a turbulence field at different levels is presented. The main results of this analysis are the averaging invariance of the filtered Navier—Stokes equations in terms of the generalized central moments, and an algebraic identity that relates the turbulent stresses at different levels. The statistical approach uses the idea of a decomposition in mean values and fluctuations, and the original turbulent field is seen as the sum of different contributions. On the other hand this operatorial approach is based on the comparison of different representations of the turbulent field at different levels, and, in the opinion of the author, it is particularly fitted to study the similarity between the turbulence at different filtering levels. The best field of application of this approach is the numerical large-eddy simulation of turbulent flows where the large scale of the turbulent field is captured and the residual small scale is modelled. It is natural to define and to extract from the resolved field the resolved turbulence and to use the information that it contains to adapt the subgrid model to the real turbulent field. Following these ideas the application of this approach to the large-eddy simulation of the turbulent flow has been produced (Germano et al. 1991). It consists in a dynamic subgrid-scale eddy viscosity model that samples the resolved scale and uses this information to adjust locally the Smagorinsky constant to the local turbulence.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 375
Author(s):  
Mohammad Khalid Hossen ◽  
Asokan Mulayath Variyath ◽  
Jahrul M. Alam

In large eddy simulation (LES) of turbulent flows, dynamic subgrid models would account for an average cascade of kinetic energy from the largest to the smallest scales of the flow. Yet, it is unclear which of the most critical dynamical processes can ensure the criterion mentioned above. Furthermore, evidence of vortex stretching being the primary mechanism of the cascade is not out of the question. In this article, we study essential statistical characteristics of vortex stretching. Our numerical results demonstrate that vortex stretching rate provides the energy dissipation rate necessary for modeling subgrid-scale turbulence. We have compared the interaction of subgrid stresses with the filtered quantities among four models using invariants of the velocity gradient tensor. The individual and the joint probability of vortex stretching and strain amplification show that vortex stretching rate is highly correlated with the energy cascade rate. Sheet-like flow structures are correlated with viscous dissipation, and vortex tubes are more stretched than compressed. The overall results indicate that the stretching mechanism extracts energy from the large-scale straining motion and passes it onto small-scale stretched vortices.


2017 ◽  
Vol 820 ◽  
pp. 121-158 ◽  
Author(s):  
W. Cheng ◽  
D. I. Pullin ◽  
R. Samtaney ◽  
W. Zhang ◽  
W. Gao

We present wall-resolved large-eddy simulations (LES) of flow over a smooth-wall circular cylinder up to$Re_{D}=8.5\times 10^{5}$, where$Re_{D}$is Reynolds number based on the cylinder diameter$D$and the free-stream speed$U_{\infty }$. The stretched-vortex subgrid-scale (SGS) model is used in the entire simulation domain. For the sub-critical regime, six cases are implemented with$3.9\times 10^{3}\leqslant Re_{D}\leqslant 10^{5}$. Results are compared with experimental data for both the wall-pressure-coefficient distribution on the cylinder surface, which dominates the drag coefficient, and the skin-friction coefficient, which clearly correlates with the separation behaviour. In the super-critical regime, LES for three values of$Re_{D}$are carried out at different resolutions. The drag-crisis phenomenon is well captured. For lower resolution, numerical discretization fluctuations are sufficient to stimulate transition, while for higher resolution, an applied boundary-layer perturbation is found to be necessary to stimulate transition. Large-eddy simulation results at$Re_{D}=8.5\times 10^{5}$, with a mesh of$8192\times 1024\times 256$, agree well with the classic experimental measurements of Achenbach (J. Fluid Mech., vol. 34, 1968, pp. 625–639) especially for the skin-friction coefficient, where a spike is produced by the laminar–turbulent transition on the top of a prior separation bubble. We document the properties of the attached-flow boundary layer on the cylinder surface as these vary with$Re_{D}$. Within the separated portion of the flow, mean-flow separation–reattachment bubbles are observed at some values of$Re_{D}$, with separation characteristics that are consistent with experimental observations. Time sequences of instantaneous surface portraits of vector skin-friction trajectory fields indicate that the unsteady counterpart of a mean-flow separation–reattachment bubble corresponds to the formation of local flow-reattachment cells, visible as coherent bundles of diverging surface streamlines.


Sign in / Sign up

Export Citation Format

Share Document