The turbulent Kármán vortex

2019 ◽  
Vol 871 ◽  
pp. 92-112
Author(s):  
J. G. Chen ◽  
Y. Zhou ◽  
R. A. Antonia ◽  
T. M. Zhou

This work focuses on the temperature (passive scalar) and velocity characteristics within a turbulent Kármán vortex using a phase-averaging technique. The vortices are generated by a circular cylinder, and the three components of the fluctuating velocity and vorticity vectors, $u_{i}$ and $\unicode[STIX]{x1D714}_{i}$ ($i=1,2,3$), are simultaneously measured, along with the fluctuating temperature $\unicode[STIX]{x1D703}$ and the temperature gradient vector, at nominally the same spatial point in the plane of mean shear at $x/d=10$, where $x$ is the streamwise distance from the cylinder axis and $d$ is the cylinder diameter. We believe this is the first time the properties of fluctuating velocity, temperature, vorticity and temperature gradient vectors have been explored simultaneously within the Kármán vortex in detail. The Reynolds number based on $d$ and the free-stream velocity is $2.5\times 10^{3}$. The phase-averaged distributions of $\unicode[STIX]{x1D703}$ and $u_{i}$ follow closely the Gaussian distribution for $r/d\leqslant 0.2$ ($r$ is the distance from the vortex centre), but not for $r/d>0.2$. The collapse of the distributions of the mean-square streamwise derivative of the velocity fluctuations within the Kármán vortex implies that the velocity field within the vortex tends to be more locally isotropic than the flow field outside the vortex. A possible physical explanation is that the large and small scales of velocity and temperature fields are statistically independent of each other near the Kármán vortex centre, but interact vigorously outside the vortex, especially in the saddle region, due to the action of coherent strain rate.

2017 ◽  
Vol 813 ◽  
pp. 667-694 ◽  
Author(s):  
J. G. Chen ◽  
T. M. Zhou ◽  
R. A. Antonia ◽  
Y. Zhou

This work compares the enstrophy with the scalar dissipation rate, as well as the passive scalar variance with the turbulent kinetic energy, in the presence of coherent Kármán vortices in the intermediate wake of a circular cylinder. Measurements are made at$x/d=10$, 20 and 40, where$x$is the streamwise distance from the cylinder axis and$d$is the cylinder diameter, with a Reynolds number of$2.5\times 10^{3}$based on the cylinder diameter and the free-stream velocity. A probe consisting of eight hot wires (four X-wires) and four cold wires is used to measure simultaneously the three components of the fluctuating velocity and vorticity vectors, as well as the fluctuating temperature gradient vector at nominally the same point in the plane of the mean shear. It is found that the enstrophy and scalar dissipation spectra collapse approximately at all wavenumbers except around the Kármán vortex street wavenumber for$x/d\geqslant 20$. The spectral similarity between the streamwise velocity fluctuation$u$and the passive scalar$\unicode[STIX]{x1D703}$is better than that between the velocity fluctuation vector$\boldsymbol{q}$and$\unicode[STIX]{x1D703}$. This is closely related to the highly organized lateral velocity fluctuation$v$in this flow. The present observations are fully consistent with the expectation that small scales of the velocity and temperature fields are more likely to exhibit a close relationship than scales associated with the bulk of the turbulent energy or scalar variance. The variation across the wake of the time scale ratio between scalar and velocity fields is significantly smaller than that of the turbulent Prandtl number.


1978 ◽  
Vol 89 (3) ◽  
pp. 561-587 ◽  
Author(s):  
Claude Béguier ◽  
Louis Fulachier ◽  
James F. Keffer

An experimental programme has been carried out to examine the spread of heat as a passive scalar contaminant in a turbulent shear flow. The situation involves a slightly heated two-dimensional jet expanding into a quiescent medium on one side and a uniform stream with velocity equal to that of the warm jet on the other. Thus the developed flow is a typical mixing layer with an asymmetric mean temperature profile superimposed on it. Measurements of the mean and fluctuating velocity and temperature fields show the existence of a region where the production of temperature fluctuations is negative. Spectral analysis in this zone indicates a separation of large and small wavenumber components of the cospectrum into two regimes. The sign of the high-frequency portion is consistent with gradient-transport concepts while the low-frequency component is of opposite sign. From this it is inferred that the large eddies are mainly responsible for the negative production. A mathematical model has been developed to describe the transport within this region.


2011 ◽  
pp. 100-104
Author(s):  
Thi Thu Nguyen ◽  
Viet Hien Vo ◽  
Thi Em Do

The study use intralesional triamcinolone acetonide injection proceduce for chalazion treatment.1. Objectives: To evaluate results of intralesional triamcinolone acetonide injection for chalazion treatment. 2. Method: This noncomparative prospective interventional trial included 72 chalazions of 61 patients. 3. Results: 61 patients (72 chalazions) with 19 males (31.1%) và 42 females (68.9%), the mean age was 24 ± 9,78 years. 31.1% patients was the first time chalazion and 68.9% patients was more than one times chalazion including 78.6% patients was recurrent at the first position and 21.4% patients occur at new position. 72 chalazions with 16 (22.2%) chalazions was treated before and 56 (77.8%) chalazions wasn’t done that. 72 chalazions with 49 chalazions (68.1%) are local in upper eyelid and 23 chalazions (31.9%) are local in lower eyelid. The mean of chalazion diameter is 6.99 ± 3.03mm. Intralesional triamcinolone acetonide is injected to treat 72 chalazions with 16 (22.2%) chalazions are injected through the route of skin and 56 (77.8%) chalazions are injected through the route of conjunctiva. After 2 weeks follow-up, the success rate was 93.1% and 6.9% failed. 4. Conclusion: intralesional triamcinolone acetonide injection for chalazion treatment is really effective. Key words: chalazion, intralesional triamcinolone acetonide.


Author(s):  
Sergey Staroverov ◽  
Sergey Kozlov ◽  
Alexander Fomin ◽  
Konstantib Gabalov ◽  
Alexey Volkov ◽  
...  

Background: The liver disease problem prompts investigators to search for new methods of liver treatment. Introduction: Silymarin (Sil) protects the liver by reducing the concentration of free radicals and the extent of damage to the cell membranes. A particularly interesting method to increase the bioavailability of Sil is to use synthesized gold nanoparticles (AuNPs) as reagents. The study considered whether it was possible to use the silymarin-AuNP conjugate as a potential liver-protecting drug. Method: AuNPs were conjugated to Sil and examine the liver-protecting activity of the conjugate. Experimental hepatitis and hepatocyte cytolysis after carbon tetrachloride actionwere used as a model system, and the experiments were conducted on laboratory animals. Result: For the first time, silymarin was conjugated to colloidal gold nanoparticles (AuNPs). Electron microscopy showed that the resultant preparations were monodisperse and that the mean conjugate diameter was 18–30 nm ± 0.5 nm (mean diameter of the native nanoparticles, 15 ± 0.5 nm). In experimental hepatitis in mice, conjugate administration interfered with glutathione depletion in hepatocytes in response to carbon tetrachloride was conducive to an increase in energy metabolism, and stimulated the monocyte–macrophage function of the liver. The results were confirmed by the high respiratory activity of the hepatocytes in cell culture. Conclusion: We conclude that the silymarin-AuNP conjugate holds promise as a liver-protecting agent in acute liver disease caused by carbon tetrachloride poisoning.


Author(s):  
Zaigham Tahir ◽  
Hina Khan ◽  
Muhammad Aslam ◽  
Javid Shabbir ◽  
Yasar Mahmood ◽  
...  

AbstractAll researches, under classical statistics, are based on determinate, crisp data to estimate the mean of the population when auxiliary information is available. Such estimates often are biased. The goal is to find the best estimates for the unknown value of the population mean with minimum mean square error (MSE). The neutrosophic statistics, generalization of classical statistics tackles vague, indeterminate, uncertain information. Thus, for the first time under neutrosophic statistics, to overcome the issues of estimation of the population mean of neutrosophic data, we have developed the neutrosophic ratio-type estimators for estimating the mean of the finite population utilizing auxiliary information. The neutrosophic observation is of the form $${Z}_{N}={Z}_{L}+{Z}_{U}{I}_{N}\, {\rm where}\, {I}_{N}\in \left[{I}_{L}, {I}_{U}\right], {Z}_{N}\in [{Z}_{l}, {Z}_{u}]$$ Z N = Z L + Z U I N where I N ∈ I L , I U , Z N ∈ [ Z l , Z u ] . The proposed estimators are very helpful to compute results when dealing with ambiguous, vague, and neutrosophic-type data. The results of these estimators are not single-valued but provide an interval form in which our population parameter may have more chance to lie. It increases the efficiency of the estimators, since we have an estimated interval that contains the unknown value of the population mean provided a minimum MSE. The efficiency of the proposed neutrosophic ratio-type estimators is also discussed using neutrosophic data of temperature and also by using simulation. A comparison is also conducted to illustrate the usefulness of Neutrosophic Ratio-type estimators over the classical estimators.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
K Wdowiak-Okrojek ◽  
P Wejner-Mik ◽  
Z Bednarkiewicz ◽  
P Lipiec ◽  
J D Kasprzak

Abstract Background Stress echocardiography (SE) plays an important role among methods of noninvasive diagnosis of ischemic disease. Despite the advantages of physical exercise as the most physiologic stressor, it is difficult (bicycle ergometer) or impossible (treadmill) to obtain and maintain the acoustic window during the exercise. Recently, an innovative probe fixation device was introduced and a research plan was developed to assess the feasibility of external probe fixation during exercise echocardiography on a supine bicycle and upright treadmill exercise for the first time. Methods 37 subjects (36 men, mean age 39 ± 16 years, 21 healthy volunteers, 16 patients with suspected coronary artery disease) were included in this study. This preliminary testing stage included mostly men due to more problematic probe fixation in women. All subjects underwent a submaximal exercise stress test on a treadmill (17/37) or bicycle ergometer (11/37). Both sector and matrix probes were used. We assessed semi-quantitatively the quality of acquired apical views at each stage – the four-point grading system was used (0-no view, 1-suboptimal quality, 2-optimal quality, 3-very good quality), 2-3 sufficient for diagnosis. Results The mean time required for careful positioning of the probe and image optimization was 12 ± 3 min and shortened from 13,7 to 11,1 minutes (mean) in first vs second half of the cohort documenting learning curve. At baseline, 9 patients had at least one apical view of quality precluding reliable analysis. Those patients were excluded from further assessment. During stress, 17 patients maintained the optimal or very good quality of all apical views, whereas in 11 patients the quality significantly decreased during the stress test and required probe repositioning. The mean image quality score at baseline was 2,61 ± 0,48 and 2,25 ± 0,6 after exercise. Expectedly, good image quality was easier to obtain and maintain in the supine position (score 2,74 ± 0,44) points as compared with upright position (score 2,25 ± 0,57). Conclusion This preliminary, unique experience with external probe fixation device indicates that continuous acquisition and monitoring of echocardiographic images is feasible during physical exercise, and for the first time ever - also on the treadmill. This feasibility data stem from almost exclusively male patients and the estimated rate of sufficient image quality throughout the entire test is currently around 60%. We are hoping, that gaining more experience with the product could increase the success rate on exercise tests. Abstract P1398 Figure. Treadmill and ergometer stress test


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Mazhyn K. Skakov ◽  
Nurzhan Ye. Mukhamedov ◽  
Alexander D. Vurim ◽  
Ilya I. Deryavko

For the first time the paper determines thermophysical properties (specific heat capacity, thermal diffusivity, and heat conductivity) of the full-scale corium of the fast energy nuclear reactor within the temperature range from ~30°С to ~400°С. Obtained data are to be used in temperature fields calculations during modeling the processes of corium melt retention inside of the fast reactor vessel.


2017 ◽  
Vol 835 ◽  
pp. 170-216 ◽  
Author(s):  
Sayan Das ◽  
Shubhadeep Mandal ◽  
Suman Chakraborty

The motion of a viscous droplet in unbounded Poiseuille flow under the combined influence of bulk-insoluble surfactant and linearly varying temperature field aligned in the direction of imposed flow is studied analytically. Neglecting fluid inertia, thermal convection and shape deformation, asymptotic analysis is performed to obtain the velocity of a force-free surfactant-laden droplet. The droplet speed and direction of motion are strongly influenced by the interfacial transport of surfactant, which is governed by surface Péclet number. The present study is focused on the following two limiting situations of surfactant transport: (i) surface-diffusion-dominated surfactant transport considering small surface Péclet number, and (ii) surface-convection-dominated surfactant transport considering high surface Péclet number. Thermocapillary-induced Marangoni stress, the strength of which relative to viscous stress is represented by the thermal Marangoni number, has a strong influence on the distribution of surfactant on the droplet surface. The present study shows that the motion of a surfactant-laden droplet in the combined presence of temperature and imposed Poiseuille flow cannot be obtained by a simple superposition of the following two independent results: migration of a surfactant-free droplet in a temperature gradient, and the motion of a surfactant-laden droplet in a Poiseuille flow. The temperature field not only affects the axial velocity of the droplet, but also has a non-trivial effect on the cross-stream velocity of the droplet in spite of the fact that the temperature gradient is aligned with the Poiseuille flow direction. When the imposed temperature increases in the direction of the Poiseuille flow, the droplet migrates towards the flow centreline. The magnitude of both axial and cross-stream velocity components increases with the thermal Marangoni number. However, when the imposed temperature decreases in the direction of the Poiseuille flow, the magnitude of both axial and cross-stream velocity components may increase or decrease with the thermal Marangoni number. Most interestingly, the droplet moves either towards the flow centreline or away from it. The present study shows a critical value of the thermal Marangoni number beyond which the droplet moves away from the flow centreline which is in sharp contrast to the motion of a surfactant-laden droplet in isothermal flow, for which the droplet always moves towards the flow centreline. Interestingly, we show that the above picture may become significantly altered in the case where the droplet is not a neutrally buoyant one. When the droplet is less dense than the suspending medium, the presence of gravity in the direction of the Poiseuille flow can lead to cross-stream motion of the droplet away from the flow centreline even when the temperature increases in the direction of the Poiseuille flow. These results may bear far-reaching consequences in various emulsification techniques in microfluidic devices, as well as in biomolecule synthesis, vesicle dynamics, single-cell analysis and nanoparticle synthesis.


2017 ◽  
Vol 834 ◽  
pp. 5-54 ◽  
Author(s):  
Dorian Dupuy ◽  
Adrien Toutant ◽  
Françoise Bataille

This paper investigates the energy exchanges associated with the half-trace of the velocity fluctuation correlation tensor in a strongly anisothermal low Mach fully developed turbulent channel flow. The study is based on direct numerical simulations of the channel within the low Mach number hypothesis and without gravity. The overall flow behaviour is governed by the variable fluid properties. The temperature of the two channel walls are imposed at 293 K and 586 K to generate the temperature gradient. The mean friction Reynolds number of the simulation is 180. The analysis is carried out in the spatial and spectral domains. The spatial and spectral studies use the same decomposition of the terms of the evolution equation of the half-trace of the velocity fluctuation correlation tensor. The importance of each term of the decomposition in the energy exchanges is assessed. This lets us identify the terms associated with variations or fluctuations of the fluid properties that are not negligible. Then, the behaviour of the terms is investigated. The spectral energy exchanges are first discussed in the incompressible case since the analysis is not present in the literature with the decomposition used in this study. The modification of the energy exchanges by the temperature gradient is then investigated in the spatial and spectral domains. The temperature gradient generates an asymmetry between the two sides of the channel. The asymmetry can in a large part be explained by the combined effect of the mean local variations of the fluid properties, combined with a Reynolds number effect.


1968 ◽  
Vol 46 (24) ◽  
pp. 2843-2845 ◽  
Author(s):  
Allan Griffin

If the temperature in an insulating crystal decreases in the z-direction, there are more phonons with momentum qz > 0 than with qz < 0. The resulting difference between the Stokes and anti-Stokes Brillouin intensities is proportional to the mean free path of the phonon involved and to the temperature gradient. The effect should be observable by either neutron or photon scattering.


Sign in / Sign up

Export Citation Format

Share Document