scholarly journals Lagrangian transport by deep-water surface gravity wavepackets: effects of directional spreading and stratification

2019 ◽  
Vol 883 ◽  
Author(s):  
C. Higgins ◽  
T. S. van den Bremer ◽  
J. Vanneste

2013 ◽  
Vol 734 ◽  
pp. 198-218 ◽  
Author(s):  
N. E. Pizzo ◽  
W. Kendall Melville

AbstractThe connection between wave dissipation by breaking deep-water surface gravity waves and the resulting turbulence and mixing is crucial for an improved understanding of air–sea interaction processes. Starting with the ensemble-averaged Euler equations, governing the evolution of the mean flow, we model the forcing, associated with the breaking-induced Reynolds shear stresses, as a body force describing the bulk scale effects of a breaking deep-water surface gravity wave on the water column. From this, we derive an equation describing the generation of circulation, $\Gamma $, of the ensemble-average velocity field, due to the body force. By examining the relationship between a breaking wave and an impulsively forced fluid, we propose a functional form for the body force, allowing us to build upon the classical work on vortex ring phenomena to both quantify the circulation generated by a breaking wave and describe the vortex structure of the induced motion. Using scaling arguments, we show that $\Gamma = \alpha {(hk)}^{3/ 2} {c}^{3} / g$, where ($c, h, k$) represent a characteristic speed, height and wavenumber of the breaking wave, respectively, $g$ is the acceleration due to gravity and $\alpha $ is a constant. This then allows us to find a direct relationship between the circulation and the wave energy dissipation rate per unit crest length due to breaking, ${\epsilon }_{l} $. Finally, we compare our model and the available experimental data.


Author(s):  
Sudebi Bhattacharyya ◽  
K. P. Das

AbstractThe effect of randomness on the stability of deep water surface gravity waves in the presence of a thin thermocline is studied. A previously derived fourth order nonlinear evolution equation is used to find a spectral transport equation for a narrow band of surface gravity wave trains. This equation is used to study the stability of an initially homogeneous Lorentz shape of spectrum to small long wave-length perturbations for a range of spectral widths. The growth rate of the instability is found to decrease with the increase of spectral widths. It is found that the fourth order term in the evolution equation produces a decrease in the growth rate of the instability. There is stability if the spectral width exceeds a certain critical value. For a vanishing bandwidth the deterministic growth rate of the instability is recovered. Graphs have been plotted showing the variations of the growth rate of the instability against the wavenumber of the perturbation for some different values of spectral width, thermocline depth, angle of perturbation and wave steepness.


2019 ◽  
Vol 873 ◽  
pp. 238-259 ◽  
Author(s):  
Nick Pizzo ◽  
W. Kendall Melville

Geometric, kinematic and dynamic properties of focusing deep-water surface gravity wave packets are examined in a simplified model with the intent of deriving a wave breaking threshold parameter. The model is based on the spatial modified nonlinear Schrödinger equation of Dysthe (Proc. R. Soc. Lond. A, vol. 369 (1736), 1979, pp. 105–114). The evolution of initially narrow-banded and weakly nonlinear chirped Gaussian wave packets are examined, by means of a trial function and a variational procedure, yielding analytic solutions describing the approximate evolution of the packet width, amplitude, asymmetry and phase during focusing. A model for the maximum free surface gradient, as a function of $\unicode[STIX]{x1D716}$ and $\unicode[STIX]{x1D6E5}$, for $\unicode[STIX]{x1D716}$ the linear prediction of the maximum slope at focusing and $\unicode[STIX]{x1D6E5}$ the non-dimensional packet bandwidth, is proposed and numerically examined, indicating a quasi-self-similarity of these focusing events. The equations of motion for the fully nonlinear potential flow equations are then integrated to further investigate these predictions. It is found that a model of this form can characterize the bulk partitioning of $\unicode[STIX]{x1D716}-\unicode[STIX]{x1D6E5}$ phase space, between non-breaking and breaking waves, serving as a breaking criterion. Application of this result to better understanding air–sea interaction processes is discussed.


PAMM ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 537-538
Author(s):  
Arne Wenzel ◽  
Dennis Bünte ◽  
Norbert P. Hoffmann

Sign in / Sign up

Export Citation Format

Share Document