The dynamics of bouncing, partially coalescing, liquid metal droplets in a viscous medium

2021 ◽  
Vol 933 ◽  
Author(s):  
Ryan McGuan ◽  
R. Candler ◽  
H.P. Kavehpour

Planar partial coalescence is a phenomenon in which a droplet at a free surface or interface between two fluids coalesces into the plane surface producing a smaller droplet rather than coalescing completely. This smaller, ‘daughter’ droplet will be driven towards the interface by gravity and capillary forces resulting in a cascade effect of progressively small daughter droplets until the Ohnesorge Number approaches $\sim$ 1 and the cascade terminates with a full coalescence event. This paper utilizes a room temperature liquid metal alloy composed of gallium, indium and tin to study partial coalescence in a viscous quiescent medium and observed bouncing of the coalescing droplets on the interface. We observed the event using high speed videography measuring effects such as the droplet to daughter droplet ratio, droplet velocities, droplet bounce heights and coefficients of restitution for the bouncing event. An existing model (Honey & Kavehpour, Phys. Rev. E, vol. 73, 2006) from our group was used, validated and expanded upon to include buoyancy effects to estimate the initial velocity of the droplet and we developed two new models for the droplet travel and maximum bounce height. The first utilizes the Stokes model for drag to moderate success while the second utilizes a model from Beard & Pruppacher (J. Atmos. Sci., vol. 26, 1969, pp. 1066–1072) and a fourth-order Runge–Kutta numerical integration scheme to predict the droplet velocity and position as functions of time. Additionally the coefficient of restitution was determined from the model using a shooting method technique in tandem with measured data to find a coefficient of restitution value of $A = 0.27 \pm 0.06$ . This ‘bouncing drop’ phenomenon continues in a quiescent viscous fluid to the sub-micron scale and was facilitated by the material properties of the liquid metal including the high density, moderate viscosity and particularly high interfacial tension.

Author(s):  
P. D. Lobanov ◽  
O. N. Kashinsky ◽  
A. S. Kurdyumov ◽  
N. A. Pribaturin

An experimental study of dynamic processes during pulsed gas injection into quiescent liquids was performed. Both water and low melting temperature metal alloy were used as test liquids. Air and argon were used as gas phase. The test sections were vertical cylindrical columns 25 and 68 mm inner diameter. Measurements of flow parameters during gas injection were performed. Water – air experiments were performed at room temperature, the temperature of liquid metal alloy was 135 deg C. Time records of pressure in the liquid and in gas phase above the liquid were obtained. Measurements of liquid temperature and level of liquid surface were performed. It was shown that at pulse gas injection into liquid metal high amplitude pressure fluctuation may arise. Also the fluctuation variation of the free surface of the liquid may appear which are connected with the oscillations of the gas volume. Experimental data obtained may be used for verification & validation of modern CFD codes.


2021 ◽  
pp. 2107062
Author(s):  
Hao Fu ◽  
Guicheng Liu ◽  
Lingyun Xiong ◽  
Manxiang Wang ◽  
Jeongwoo Lee ◽  
...  

2018 ◽  
Vol 122 (46) ◽  
pp. 26393-26400 ◽  
Author(s):  
Zachary J. Farrell ◽  
Nina Reger ◽  
Ian Anderson ◽  
Ellen Gawalt ◽  
Christopher Tabor

2021 ◽  
Vol 2057 (1) ◽  
pp. 012039
Author(s):  
P D Lobanov ◽  
N A Pribaturin ◽  
A I Svetonosov

Abstract To determine the separation diameter of bubbles in a liquid metal melt, an original technique based on the conductivity method is proposed. A thin electrode is installed in the center of the outflow channel, and the separation of bubbles is determined by closing and opening the electrical circuit. In this way, the separation frequency of the bubbles and their volume can be determined. Additional studies are carried out on a transparent liquid (water). It is shown that the presence of an electrode has little effect on the process of bubble detachment. The processing data of high-speed video filming and the proposed method in a transparent liquid coincide with high accuracy. Measurements of the frequency of bubble detachment in melts of the Rose and lead alloy are carried out. The results obtained are used to tune two-phase flow models when simulating fast neutron reactors with heavy liquid metal coolants.


Sign in / Sign up

Export Citation Format

Share Document