Acoustic streaming in Maxwell fluids generated by standing waves in two-dimensional microchannels

2022 ◽  
Vol 933 ◽  
Author(s):  
C. Vargas ◽  
I. Campos-Silva ◽  
F. Méndez ◽  
J. Arcos ◽  
O. Bautista

In this work, a semianalytic solution for the acoustic streaming phenomenon, generated by standing waves in Maxwell fluids through a two-dimensional microchannel (resonator), is derived. The mathematical model is non-dimensionalized and several dimensionless parameters that characterize the phenomenon arise: the ratio between the oscillation amplitude of the resonator and the half-wavelength ( $\eta =2A/\lambda _{a}$ ); the product of the fluid relaxation time times the angular frequency known as the Deborah number ( $De=\lambda _{1}\omega$ ); the aspect ratio between the microchannel height and the wavelength ( $\epsilon =2 H_{0}/\lambda _{a}$ ); and the ratio between half the height of the microchannel and the thickness of the viscous boundary layer ( $\alpha =H_{0}/\delta _{\nu }$ ). In the limit when $\eta \ll 1$ , we obtain the hydrodynamic behaviour of the system using a regular perturbation method. In the present work, we show that the acoustic streaming speed is proportional to $\alpha ^{2.65}De^{1.9}$ , and the acoustic pressure varies as $\alpha ^{6/5}De^{1/2}$ . Also, we have found that the growth of inner vortex is due to convective terms in the Maxwell rheological equation. Furthermore, the velocity antinodes show a high dependency on the Deborah number, highlighting the fluid's viscoelastic properties and the appearance of resonance points. Due to the limitations of perturbation methods, we will only analyse narrow microchannels.

2003 ◽  
Vol 113 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Mark F. Hamilton ◽  
Yurii A. Ilinskii ◽  
Evgenia A. Zabolotskaya

Wave Motion ◽  
2013 ◽  
Vol 50 (5) ◽  
pp. 955-963 ◽  
Author(s):  
Virginie Daru ◽  
Diana Baltean-Carlès ◽  
Catherine Weisman ◽  
Philippe Debesse ◽  
Gurunath Gandikota

2005 ◽  
Vol 127 (2) ◽  
pp. 302-305 ◽  
Author(s):  
Rong Zhang ◽  
Xueming He ◽  
Simon X. Yang ◽  
Xinkai Li

There are many studies on variations of the Maxwell model. Tichy (1996) discussed an admissible formulation of the Maxwell viscoelastic fluid model using a convected derivative and applied it to two-dimensional lubrication flow. Tichy obtained a solution using a regular perturbation in the Deborah number with the conventional lubrication solution as the leading term. This paper extends Tichy’s model by using a double regular perturbation to the convected Maxwell model. A correspondence solution can also be obtained. Our sliding velocity solution is different from Tichy’s solution; and a modified Reynolds equation is also different from that by Tichy.


2010 ◽  
Vol 645 ◽  
pp. 411-434 ◽  
Author(s):  
PETER GUBA ◽  
M. GRAE WORSTER

We study nonlinear, two-dimensional convection in a mushy layer during solidification of a binary mixture. We consider a particular limit in which the onset of oscillatory convection just precedes the onset of steady overturning convection, at a prescribed aspect ratio of convection patterns. This asymptotic limit allows us to determine nonlinear solutions analytically. The results provide a complete description of the stability of and transitions between steady and oscillatory convection as functions of the Rayleigh number and the compositional ratio. Of particular focus are the effects of the basic-state asymmetries and non-uniformity in the permeability of the mushy layer, which give rise to abrupt (hysteretic) transitions in the system. We find that the transition between travelling and standing waves, as well as that between standing waves and steady convection, can be hysteretic. The relevance of our theoretical predictions to recent experiments on directionally solidifying mushy layers is also discussed.


2002 ◽  
Vol 69 (3) ◽  
pp. 346-357 ◽  
Author(s):  
W.-C. Xie

The moment Lyapunov exponents of a two-dimensional viscoelastic system under bounded noise excitation are studied in this paper. An example of this system is the transverse vibration of a viscoelastic column under the excitation of stochastic axial compressive load. The stochastic parametric excitation is modeled as a bounded noise process, which is a realistic model of stochastic fluctuation in engineering applications. The moment Lyapunov exponent of the system is given by the eigenvalue of an eigenvalue problem. The method of regular perturbation is applied to obtain weak noise expansions of the moment Lyapunov exponent, Lyapunov exponent, and stability index in terms of the small fluctuation parameter. The results obtained are compared with those for which the effect of viscoelasticity is not considered.


2013 ◽  
Vol 727 ◽  
pp. 236-255 ◽  
Author(s):  
D. Vigolo ◽  
I. M. Griffiths ◽  
S. Radl ◽  
H. A. Stone

AbstractUnderstanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar–turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow.


2000 ◽  
Author(s):  
Wei-Chau Xie

Abstract The moment Lyapunov exponents of a two-dimensional system under bounded noise parametric excitation are studied in this paper. The method of regular perturbation is applied to obtain weak noise expansions of the moment Lyapunov exponent, Lyapunov exponent, and stability index in terms of the small fluctuation parameter.


Sign in / Sign up

Export Citation Format

Share Document