Secondary generation of breaking internal waves in confined basins by gravity currents

2021 ◽  
Vol 917 ◽  
Author(s):  
Yukinobu Tanimoto ◽  
Nicholas T. Ouellette ◽  
Jeffrey R. Koseff

Abstract

2008 ◽  
Vol 616 ◽  
pp. 327-356 ◽  
Author(s):  
BRIAN L. WHITE ◽  
KARL R. HELFRICH

A steady theory is presented for gravity currents propagating with constant speed into a stratified fluid with a general density profile. Solution curves for front speed versus height have an energy-conserving upper bound (the conjugate state) and a lower bound marked by the onset of upstream influence. The conjugate state is the largest-amplitude nonlinear internal wave supported by the ambient stratification, and in the limit of weak stratification approaches Benjamin's energy-conserving gravity current solution. When the front speed becomes critical with respect to linear long waves generated above the current, steady solutions cannot be calculated, implying upstream influence. For non-uniform stratification, the critical long-wave speed exceeds the ambient long-wave speed, and the critical-Froude-number condition appropriate for uniform stratification must be generalized. The theoretical results demonstrate a clear connection between internal waves and gravity currents. The steady theory is also compared with non-hydrostatic numerical solutions of the full lock release initial-value problem. Some solutions resemble classic gravity currents with no upstream disturbance, but others show long internal waves propagating ahead of the gravity current. Wave generation generally occurs when the stratification and current speed are such that the steady gravity current theory fails. Thus the steady theory is consistent with the occurrence of either wave-generating or steady gravity solutions to the dam-break problem. When the available potential energy of the dam is large enough, the numerical simulations approach the energy-conserving conjugate state. Existing laboratory experiments for intrusions and gravity currents produced by full-depth lock exchange flows over a range of stratification profiles show excellent agreement with the conjugate state solutions.


2009 ◽  
Vol 635 ◽  
pp. 245-273 ◽  
Author(s):  
J. R. MUNROE ◽  
C. VOEGELI ◽  
B. R. SUTHERLAND ◽  
V. BIRMAN ◽  
E. H. MEIBURG

Gravity currents intruding into a uniformly stratified ambient are examined in a series of finite-volume full-depth lock-release laboratory experiments and in numerical simulations. Previous studies have focused on gravity currents which are denser than fluid at the bottom of the ambient or on symmetric cases in which the intrusion is the average of the ambient density. Here, we vary the density of the intrusion between these two extremes. After an initial adjustment, the intrusions and the internal waves they generate travel at a constant speed. For small departures from symmetry, the intrusion speed depends weakly upon density relative to the ambient fluid density. However, the internal wave speed approximately doubles as the waves change from having a mode-2 structure when generated by symmetric intrusions to having a mode-1 structure when generated by intrusions propagating near the bottom. In the latter circumstance, the interactions between the intrusion and internal waves reflected from the lock-end of the tank are sufficiently strong and so the intrusion stops propagating before reaching the end of the tank. These observations are corroborated by the analysis of two-dimensional numerical simulations of the experimental conditions. These reveal a significant transfer of available potential energy to the ambient in asymmetric circumstances.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


2019 ◽  
Vol 485 (4) ◽  
pp. 428-433
Author(s):  
V. G. Baydulov ◽  
P. A. Lesovskiy

For the symmetry group of internal-wave equations, the mechanical content of invariants and symmetry transformations is determined. The performed comparison makes it possible to construct expressions for analogs of momentum, angular momentum, energy, Lorentz transformations, and other characteristics of special relativity and electro-dynamics. The expressions for the Lagrange function are defined, and the conservation laws are derived. An analogy is drawn both in the case of the absence of sources and currents in the Maxwell equations and in their presence.


Tellus ◽  
1972 ◽  
Vol 24 (2) ◽  
pp. 161-163 ◽  
Author(s):  
Jacques C. J. Nihoul

Sign in / Sign up

Export Citation Format

Share Document