On the applicability of Taylor's hypothesis, including small sampling velocities

2021 ◽  
Vol 932 ◽  
Author(s):  
Hans L. Pécseli ◽  
Jan K. Trulsen

Taylor's hypothesis, or the frozen turbulence approximation, can be used to estimate also the specific energy dissipation rate $\epsilon$ by comparing experimental results with the Kolmogorov–Obukhov expression. The hypothesis assumes that a frequency detected by an instrument moving with a constant large velocity $V$ can be related to a wavenumber by $\omega = k V$ . It is, however, not obvious how large the translational velocity has to be in order to make the hypothesis valid, or at least applicable with some acceptable uncertainty. Using the space–time-varying structure function for homogeneous and isotropic conditions, this question is addressed in the present study with emphasis on small velocities $V$ . The structure function is obtained using results from numerical solutions of the Navier–Stokes equation. Particular attention is given to the $V$ variation of the estimated specific energy dissipation, $\epsilon _{est}$ , compared with the actual value, $\epsilon$ , used in the numerical calculations. In contrast to previous studies, the results emphasize velocities $V$ less than or comparable to the one-component root-mean-square velocity, $u_{rms}$ . We find that $\epsilon$ can be determined to an acceptable accuracy for $V \geq 0.3\,u_{rms}$ . A simple analytical model is suggested to explain the main features of the observations, both Eulerian and Lagrangian. The model assumes that the observed time variations are solely due to eddies moving past the observer, thus ignoring eddy deformation and intermittency effects. In spite of these simplifications, the analysis accounts for most of the numerical results when also eddy-size-dependent velocities are accounted for.

2012 ◽  
Vol 697 ◽  
pp. 204-236 ◽  
Author(s):  
Saba Almalkie ◽  
Stephen M. de Bruyn Kops

AbstractHigh-resolution direct numerical simulations of isotropic homogeneous turbulence are used to understand the differences between the effects of spatial intermittency on the energy dissipation rate and on surrogates for the dissipation rate that are based on measurements of a subset of the strain rate tensor. In particular, the one-dimensional longitudinal and transverse surrogates, as well as a surrogate based on the asymmetric part of the strain rate tensor, are considered. The instantaneous surrogates are studied locally, locally averaged in space and conditionally averaged to see what statistics of the dissipation rate might accurately be inferred given measurements of the surrogates. The simulations with the Reynolds numbers based on the Taylor microscale of 102–235 are highly resolved for accurate evaluation of higher-order statistics. The probability densities of the local and locally averaged surrogates are significantly different from the corresponding statistics for the dissipation rate itself. All of the surrogates are more intermittent than the dissipation rate, the transverse surrogate is more intermittent than the longitudinal and these trends are still prominent even when the fields are spatially averaged at length scales close to the integral length scale. As a consequence, the intermittency exponent computed from the moments of the locally averaged longitudinal and transverse surrogates is approximately 1.5 and 2.2 times higher, respectively, than that computed by the same method from the dissipation rate field. In addition, while different methods of computing intermittency exponent from the dissipation rate field yield the same result, different methods applied to a surrogate are inconsistent.


2015 ◽  
Vol 137 ◽  
pp. 752-767 ◽  
Author(s):  
Mohammad Mainul Hoque ◽  
Mayur J. Sathe ◽  
Subhasish Mitra ◽  
Jyeshtharaj B. Joshi ◽  
Geoffrey M. Evans

2013 ◽  
Vol 715 ◽  
pp. 359-388 ◽  
Author(s):  
Basile Gallet ◽  
William R. Young

AbstractWe investigate solutions of the two-dimensional Navier–Stokes equation in a $\lrm{\pi} \ensuremath{\times} \lrm{\pi} $ square box with stress-free boundary conditions. The flow is steadily forced by the addition of a source $\sin nx\sin ny$ to the vorticity equation; attention is restricted to even $n$ so that the forcing has zero integral. Numerical solutions with $n= 2$ and $6$ show that at high Reynolds numbers the solution is a domain-scale vortex condensate with a strong projection on the gravest mode, $\sin x\sin y$. The sign of the vortex condensate is selected by a symmetry-breaking instability. We show that the amplitude of the vortex condensate has a finite limit as $\nu \ensuremath{\rightarrow} 0$. Using a quasilinear approximation we make an analytic prediction of the amplitude of the condensate and show that the amplitude is determined by viscous selection of a particular solution from a family of solutions to the forced two-dimensional Euler equation. This theory indicates that the condensate amplitude will depend sensitively on the form of the dissipation, even in the undamped limit. This prediction is verified by considering the addition of a drag term to the Navier–Stokes equation and comparing the quasilinear theory with numerical solution.


1965 ◽  
Vol 87 (4) ◽  
pp. 977-985 ◽  
Author(s):  
R. D. Ivany ◽  
F. G. Hammitt

Collapse of a spherical bubble in a compressible liquid, including the effects of surface tension, viscosity, and an adiabatic compression of gas within the bubble is investigated by numerical solutions of the hydrodynamic equations. A limiting value of shear viscosity causes the bubble collapse to slow down markedly, for both compressible and incompressible liquids, whereas moderate viscosities have very little effect on the rate of collapse. The inclusion of surface tension and viscosity introduces two scaling parameters into the solution, so that a single normalized solution is no longer sufficient to describe collapse behavior. The magnitude of the density changes calculated for the compressible liquid and the extremely rapid changes with time suggest that the usual Navier-Stokes equation of motion may not be appropriate. The possibility of liquid relaxational phenomenon and its contribution to sonoluminescence is considered. Shock waves or damagingly high pressures are not generated during collapse at a distance in the liquid equal to the initial radius from the center of collapse, although they will appear at such a distance if the bubble rebounds.


Author(s):  
M. Nadeem Azam ◽  
M. Umar ◽  
M. Maqsood ◽  
Imran Akhtar ◽  
Imran Aziz

Pumping speed is the main performance parameter of a vacuum pump. In the present work, pumping speed for a three-vane rotary vacuum pump is quantified using both experimental and numerical approaches. The numerical methodology assumes continuum flow (Knudsen number < 0.1), thus allowing the use of Navier Stokes equation. Commercial computational fluid dynamics (CFD) solver i.e. Fluent, is used to discretize the governing equations. Moving / dynamic mesh technique is used for the internal flow volumes of the pump to reproduce the change-in-time shape. Complete process starting from the CAD modeling to CFD simulations is discussed in detail. The adopted approaches are generic and can be used to find the pumping speed of any other rotary vane vacuum pump. The vane pump is also tested using an assessment system, which is constructed according to DIN28432 standard. Results of experimentally measured pumping speed are in good agreement with the one computed numerically.


2016 ◽  
Vol 10 (1) ◽  
pp. 168-185 ◽  
Author(s):  
K.K. Kataria ◽  
P. Vellaisamy

In this paper, we discuss two simple parametrization methods for calculating Adomian polynomials for several nonlinear operators, which utilize the orthogonality of functions einx, where n is an integer. Some important properties of Adomian polynomials are also discussed and illustrated with examples. These methods require minimum computation, are easy to implement, and are extended to multivariable case also. Examples of different forms of nonlinearity, which includes the one involved in the Navier Stokes equation, is considered. Explicit expression for the n-th order Adomian polynomials are obtained in most of the examples.


Author(s):  
J. He ◽  
B. Q. Zhang

A new hyperbolic function discretization equation for two dimensional Navier-Stokes equation in the stream function vorticity from is derived. The basic idea of this method is to integrat the total flux of the general variable ϕ in the differential equations, then incorporate the local analytic solutions in hyperbolic function for the one-dimensional linearized transport equation. The hyperbolic discretization (HD) scheme can more accurately represent the conservation and transport properties of the governing equation. The method is tested in a range of Reynolds number (Re=100~2000) using the viscous incompressible flow in a square cavity. It is proved that the HD scheme is stable for moderately high Reynolds number and accurate even for coarse grids. After some proper extension, the method is applied to predict the flow field in a new type combustor with air blast double-vortex and obtained some useful results.


Sign in / Sign up

Export Citation Format

Share Document