Pumping Speed Measurement of the Rotary Vane Vacuum Pump by Using Numerical and Experimental Approaches

Author(s):  
M. Nadeem Azam ◽  
M. Umar ◽  
M. Maqsood ◽  
Imran Akhtar ◽  
Imran Aziz

Pumping speed is the main performance parameter of a vacuum pump. In the present work, pumping speed for a three-vane rotary vacuum pump is quantified using both experimental and numerical approaches. The numerical methodology assumes continuum flow (Knudsen number < 0.1), thus allowing the use of Navier Stokes equation. Commercial computational fluid dynamics (CFD) solver i.e. Fluent, is used to discretize the governing equations. Moving / dynamic mesh technique is used for the internal flow volumes of the pump to reproduce the change-in-time shape. Complete process starting from the CAD modeling to CFD simulations is discussed in detail. The adopted approaches are generic and can be used to find the pumping speed of any other rotary vane vacuum pump. The vane pump is also tested using an assessment system, which is constructed according to DIN28432 standard. Results of experimentally measured pumping speed are in good agreement with the one computed numerically.

2014 ◽  
Vol 554 ◽  
pp. 696-700 ◽  
Author(s):  
Nur Farhana Mohamad Kasim ◽  
Sheikh Ahmad Zaki ◽  
Mohamed Sukri Mat Ali ◽  
Ahmad Faiz Mohammad ◽  
Azli Abd Razak

Wind-induced ventilation is widely acknowledged as one of the best approaches for inducing natural ventilation. Computational fluid dynamics (CFD) technique is gaining popularity among researchers as an alternative for experimental methods to investigate the behavior of wind-driven ventilation in building. In this present paper, Reynolds averaged Navier-Stokes equation (RANS) k-ε model approach is considered to simulate the airflow on a simplified cubic building with an opening on a single façade. Preliminary simulation using models from previous experiment indicates the reliability of OpenFOAM, the open source software that will be used in this study. The results obtained in this study will better define options for our future study which aims to explore how different buildings arrays modify the airflow inside and around a naturally ventilated building.


2015 ◽  
Vol 157 (B2) ◽  
Author(s):  
M Ferrando ◽  
S Gaggero ◽  
D Villa

In recent years, the application of Computational Fluid Dynamics (CFD) methods experienced an exponential growth: the increase of the computational performances and the generalization of the Navier-Stokes equation to more complex physical problems made possible the solution of complex problems like free surfaces flows. The physical complexity of planing hulls flows poses some issues in the ability to numerically predict the global hydrodynamic parameters (hull resistance, dynamic attitude) of these configurations and on the expected confidence on the numerical results. In the last decade, commercial RANS software have been successfully applied for the prediction of the planing hull characteristics with reasonable correlation to the available experimental measurements. Recently, moreover, the interest in Open Source approaches, also for the solution of engineering problems, has rapidly grow. In this work, a set of calculations on a systematic series standard hull shape has been carried out, adopting from pre- to post- processing only Open Source tools. The comparison and the validation, through the available experimental measurements, of the computed results will define an optimal simulation strategy to include this kind of tools in the usual design loop.


Author(s):  
Seon Oh Yoo ◽  
Hyun Joe Kim ◽  
Dong Yeon Lee ◽  
Booki Kim ◽  
Seung Ho Yang

Recently, drillship moonpools are getting longer and wider for the higher operability. With this trend, violent internal flows are getting more concerned in terms of the safety and operability, which have been reported during the operations even in mild seas. Also, it is well known that the internal flow gives higher resistance during the transit of drillship. In this study, to see the effect of larger damping devices, a series of experimental and numerical study was carried out for the four moonpool designs; the ordinary plain moonpool, the moonpool with a recess deck, the moonpool with an isolated recess deck (island deck), and moonpool with a combination of island deck, splash plates, and wave absorber. From the model tests, it was found that the internal flow of the moonpool was significantly reduced by the application of the wave absorber. In case of the moonpool with the island deck, the sloshing mode oscillations was not observed due to the gap flow between the inner wall of the moonpool and the recess. For the in-depth understanding of the flow behaviors and characteristics, the internal flow of the moonpool has been investigated using Reynolds-averaged Navier–Stokes based computational fluid dynamics (CFD) code. The various moonpool designs were simulated to identify the effect of each device for the internal flow reduction of the moonpool. The CFD analysis results with regular waves, the water surface responses inside moonpool such as the flow pattern and resonance frequency, were compared with model test results and showed reasonably good agreements.


2013 ◽  
Vol 465-466 ◽  
pp. 552-556
Author(s):  
Muhammad Ammar Nik Mutasim ◽  
Nurul Suraya Azahari ◽  
Ahmad Alif Ahmad Adam

Energy is one of the most important sources in the world especially for developing countries. The subject study is conducted to predict the behaviour of particle due to errosion from the river through the achimedes screw runner and predict the impact of particle toward blade surface. For this reason, computational fluid dynamics (CFD) methods are used. The three-dimensional flow of fluid is numerically analyzed using the Navier-Stokes equation with standard k-ε turbulence model. The reinverse design of archimedes screw blade was refered with the previous researcher. Flow prediction with numerical results such as velocity streamlines, flow pattern and pressure contour for flow of water entering the blade are discussed. This study shows that the prediction of particle impact occurs mostly on the entering surface blade and along the leading edge of the screw runner. Any modification on the design of the screw runner blade can be analyze for further study.


2016 ◽  
Vol 10 (1) ◽  
pp. 168-185 ◽  
Author(s):  
K.K. Kataria ◽  
P. Vellaisamy

In this paper, we discuss two simple parametrization methods for calculating Adomian polynomials for several nonlinear operators, which utilize the orthogonality of functions einx, where n is an integer. Some important properties of Adomian polynomials are also discussed and illustrated with examples. These methods require minimum computation, are easy to implement, and are extended to multivariable case also. Examples of different forms of nonlinearity, which includes the one involved in the Navier Stokes equation, is considered. Explicit expression for the n-th order Adomian polynomials are obtained in most of the examples.


Author(s):  
J. He ◽  
B. Q. Zhang

A new hyperbolic function discretization equation for two dimensional Navier-Stokes equation in the stream function vorticity from is derived. The basic idea of this method is to integrat the total flux of the general variable ϕ in the differential equations, then incorporate the local analytic solutions in hyperbolic function for the one-dimensional linearized transport equation. The hyperbolic discretization (HD) scheme can more accurately represent the conservation and transport properties of the governing equation. The method is tested in a range of Reynolds number (Re=100~2000) using the viscous incompressible flow in a square cavity. It is proved that the HD scheme is stable for moderately high Reynolds number and accurate even for coarse grids. After some proper extension, the method is applied to predict the flow field in a new type combustor with air blast double-vortex and obtained some useful results.


2011 ◽  
Vol 317-319 ◽  
pp. 789-793
Author(s):  
Xiao Feng Shang ◽  
Liang Tong ◽  
Zhi Jian Wang

The three-Dimensional model of 40BZ6-15 centrifugal pump is built by the Solidworks software. This paper employs three-D Navier-Stokes equation and standard equation, and uses MRF and STMPLE algorithm to simulate the internal flowing of the 40BZ6 centrifugal pump. The velocity field and pressure field are gained. Through a further analysis, the rule of the internal flow of the centrifugal pump is unveiled, and then the simulative results are compared with the experimental ones, which can provide the base for the further improvement of the centrifugal pump.


Author(s):  
Ioannis Templalexis ◽  
Pericles Pilidis ◽  
Geoffrey Guindeuil ◽  
Petros Kotsiopoulos ◽  
Vassilios Pachidis

This study has been carried out as a part of a general effort to develope a powerful simulation code, based on the Vortex Lattice Method (VLM), capable of simulating adequately accurate and comparatively fast, internal flow regimes. It utilizes a convergent – (nearly) constant area axi-symmetric intake three dimensional geometry, emerged as a surface of revolution from the CFM56-5B2 lower lip geometry. The study focuses on the three most critical planes, which are the inlet of the intake, the outlet of the diverging section and the outlet of the intake. Moreover, the sensitivity of the simulation on the variation of the Angle Of Attack (AOA) is tested for four different settings equally spaced, ranging from 0 to 20 degrees. The comparison is carried out on both two-dimensional velocity distributions and average values. The VLM simulation code was based on an existing code, which was modified in order to be adapted to the Reynolds Average Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) boundary conditions.


2019 ◽  
Vol 49 (1) ◽  
pp. 113-119
Author(s):  
Екатерина Фоменко ◽  
Ekaterina Fomenko ◽  
Альберт Нугманов ◽  
Albert Nugmanov

The present research features the problems of wheat processing. Wheat processing has its own specific features. For instance, the process of gluten extrusion forming is very complex since it is associated with the visco-elastic and adhesive properties of raw gluten. The article discusses the results of applying the numerical finite difference method to the Navier-Stokes equation in the case of the one-dimensional problem when a cooled viscoelastic material has to pass through circular nozzles. The paper also features the obtained surface model of velocity evolution and some averaged results for the possible automation of the process. The viscosity properties of raw gluten are variable and depend on temperature, chemical composition, and properties of the raw material. Modeling makes it possible to characterize the properties of the material and its behavior in various situations. Such research demands neither additional time nor significant costs. The authors identified patterns of movement for raw gluten in the extrusion molding unit and selected the most appropriate automation system to control the speed of its movement to the molding assembly in the grinder feed screw. The significance of the research is obvious for subsequent physical and mathematical modeling of heat and mass transfer processes of vacuum freezing and drying and granulating of gluten extrusions. The results of the research presented in the article are consistent with the available information on this topic. The present approach to solving the problem of choosing the best rational hydrodynamic regimes was applied due to the complexity of the experimental determination of velocity fields and the difficulty of analyzing the Navier-Stokes system of hydrodynamic differential equations with variable proportionality coefficients.


Sign in / Sign up

Export Citation Format

Share Document