Damped shape oscillations of a viscous compound droplet suspended in a viscous host fluid

2021 ◽  
Vol 931 ◽  
Author(s):  
Fang Li ◽  
Xie-Yuan Yin ◽  
Xie-Zhen Yin

A study of small-amplitude shape oscillations of a viscous compound droplet suspended in a viscous host fluid is performed. A generalized eigenvalue problem is formulated and is solved by using the spectral method. The effects of the relevant non-dimensional parameters are examined for three cases, i.e. a liquid shell in a vacuum and a compound droplet in a vacuum or in a host fluid. The fundamental mode $l=2$ is found to be dominant. There exist two oscillatory modes: the in phase and the out of phase. In most situations, the interfaces oscillate in phase rather than out of phase. For the in-phase mode, in the absence of the host, as the viscosity of the core or the shell increases, the damping rate increases whereas the oscillation frequency decreases; when the viscosity exceeds a critical value, the mode becomes aperiodic with the damping rate bifurcating into two branches. In addition, when the tension of the inner interface becomes smaller than some value, the in-phase mode turns aperiodic. In the presence of the unbounded host fluid, there exists a continuous spectrum. The viscosity of the host may decrease or increase the damping rate of the in-phase mode. The mechanism behind it is discussed. The density contrasts between fluids affect oscillations of the droplet in a complicated way. Particularly, sufficiently large densities of the core or the host lead to the disappearance of the out-of-phase mode. The thin shell approximation predicts well the oscillation of the compound droplet when the shell is thin.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yanyan Hu ◽  
Mei Yan ◽  
Zhongyi Xiang

We investigate the dynamic behaviors of a two-prey one-predator system with stage structure and birth pulse for predator. By using the Floquet theory of linear periodic impulsive equation and small amplitude perturbation method, we show that there exists a globally asymptotically stable two-prey eradication periodic solution when the impulsive period is less than some critical value. Further, we study the permanence of the investigated model. Our results provide valuable strategy for biological economics management. Numerical analysis is also inserted to illustrate the results.


2006 ◽  
Vol 42 (10) ◽  
pp. 3144-3146 ◽  
Author(s):  
O. Bottauscio ◽  
M. Chiampi ◽  
A. Manzin

Kelvin showed that a two-dimensional vortex under a two-dimensional disturbance in incompressible flow responds at a discrete set of eigenvalues, which were found by Broadbent & Moore ( Phil. Trans. R. Soc. Lond. A 290, 353-371 (1979) to become unstable in a compressible fluid. It is now shown that three-dimensional perturbations are also unstable provided the wavelength is greater than some critical value that depends on the Mach number of the vortex. A critical boundary dividing stable from unstable modes is defined. Most of the results relate to a Rankine vortex, as in the previous work mentioned above, but some results are also given for a vortex with a different velocity profile within the core; qualitatively the same kind of behaviour is found.


2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
Chunjin Wei ◽  
Lansun Chen

According to biological strategy for pest control, a mathematical model with periodic releasing virus particles for insect viruses attacking pests is considered. By using Floquet's theorem, small-amplitude perturbation skills and comparison theorem, we prove that all solutions of the system are uniformly ultimately bounded and there exists a globally asymptotically stable pest-eradication periodic solution when the amount of virus particles released is larger than some critical value. When the amount of virus particles released is less than some critical value, the system is shown to be permanent, which implies that the trivial pest-eradication solution loses its stability. Further, the mathematical results are also confirmed by means of numerical simulation.


Author(s):  
Shan Huang ◽  
Wusheng Wu

Wake-induced riser oscillation can lead to riser clashing. Furthermore, the onset of the wake-induced riser oscillation, which is typified by its large amplitude and low frequency, is attributed to the loss of stability of the downstream riser in the wake once the current exceeds a critical value. The loss of stability is mathematically characterised by a stationary bifurcation. Based upon our previous work, further results are presented in the paper on the non-dimensional parameters which govern the critical current speed. These non-dimensional parameters, once computed, can then be used by riser designers to assess potential riser clashing and/or ascertain the minimum riser spacing and top tension required in order to avoid riser clashing.


Author(s):  
Qun Wan ◽  
A. V. Kuznetsov

The main purpose of this paper is to investigate the oscillating and streaming flow fields and the heat transfer efficiency across a channel between two long parallel beams, one of which is stationary and the other oscillating in standing wave form. The oscillating amplitude is assumed much smaller than the channel height. When the Reynolds number, which is defined by the oscillating frequency and the standing wave number, is much greater than unity, boundary layer structures are found near both beams, which are separated by a core region in the center of the channel. The oscillating fields within the core region and both boundary layers are obtained analytically. Based on the oscillating fields, the streaming fields within both boundary layers are also analytically obtained. Further investigation of boundary layer streaming fields shows that the streaming velocities approach constant values at the edges of the boundary layers and provide slip velocities for the streaming field in the core region. The core region streaming velocity field is numerically obtained by solving the mass and momentum conservation equations in their stream function–vorticity form. The temperature field is also computed for two cases: both beams are kept at constant but different temperatures (case A) or the oscillating beam is kept at a constant temperature and the stationary beam is prescribed a constant heat flux (case B). Cases of different channel heights are computed and a critical height is found. When the channel height is smaller than the critical value, for each half standing wavelength distance along the beams, two symmetric eddies are observed, which occupy the whole channel. In this case, the Nusselt number increases with the increase of the channel height. After the critical value, two layers of asymmetric eddies are observed near the oscillating beam and the Nusselt number decreases and approaches unity with the increase of the gap size. The abrupt change of the streaming field and the Nusselt number as the channel height goes through its critical value may be due to the bifurcation caused by instability of the vortex structure in the fluid layer.


2009 ◽  
Vol 398 (3) ◽  
pp. 1537-1548 ◽  
Author(s):  
James E. Dale ◽  
Richard Wünsch ◽  
Anthony Whitworth ◽  
Jan Palouš

Sign in / Sign up

Export Citation Format

Share Document