scholarly journals Transient evolution of basal drag during glacier slip

2021 ◽  
pp. 1-10
Author(s):  
Lucas K. Zoet ◽  
Neal R. Iverson ◽  
Lauren Andrews ◽  
Christian Helanow

Abstract Glacier slip is usually described using steady-state sliding laws that relate drag, slip velocity and effective pressure, but where subglacial conditions vary rapidly transient effects may influence slip dynamics. Here we use results from a set of laboratory experiments to examine the transient response of glacier slip over a hard bed to velocity perturbations. The drag and cavity evolution from lab experiments are used to parameterize a rate-and-state drag model that is applied to observations of surface velocity and ice-bed separation from the Greenland ice sheet. The drag model successfully predicts observed lags between changes in ice-bed separation and sliding speed. These lags result from the time (or displacement) required for cavities to evolve from one steady-state condition to another. In comparing drag estimates resulting from applying rate-and-state and steady-state slip laws to transient data, we find the peaks in drag are out of phase. This suggests that in locations where subglacial conditions vary on timescales shorter than those needed for cavity adjustment transient slip processes control basal drag.

2004 ◽  
Vol 39 ◽  
pp. 402-408 ◽  
Author(s):  
Luca Vittuari ◽  
Christian Vincent ◽  
Massimo Frezzotti ◽  
Francesco Mancini ◽  
Stefano Gandolfi ◽  
...  

AbstractDome C was chosen by the European Project for Ice Coring in Antarctica (EPICA) as the site for the drilling of a deep ice core. This paper presents results from geodetic surveys of ice velocities (absolute and relative) at Dome C and along a transect to Terra Nova Bay. The purpose of the surveys was to provide accurate data for the study of ice dynamics, particularly a strain network comprising 37 poles surveyed in 1995 and again in 1999. Data indicate that the ice surface at the poles closest to the topographic summit moves horizontally by up to a few mm a–1 in a direction consistent with downslope motion of the ice sheet, while 25 km from the summit it moves up to 211 mma–1. The EPICA drilling site yields an interpolated velocity of about 15 ±10mma–1 in a north-northwesterly direction. Analysis of the velocity field and surface topography reveals that the surface flow centre is nearly co-located with the dome summit, and that both are in a steady-state condition. The measured horizontal velocities are consistent with the remote-sensing result and provide accurate ground-truth control for flow mapping. Seven snow–firn cores, up to 53m deep, were drilled during the Terra Nova Bay–Dome C traverse. Submerged velocity systems were installed at the borehole and measured using the global positioning system (GPS). First results show a steady-state condition. Measured (horizontal) ice velocities increase from the summit of the ice sheet to the coast, reaching about 28 ma–1 at site GPS2A.


2003 ◽  
Vol 49 (165) ◽  
pp. 201-209 ◽  
Author(s):  
Niels Reeh ◽  
Johan Jacob Mohr ◽  
Søren Nørvang Madsen ◽  
Hans Oerter ◽  
Niels S. Gundestrup

AbstractNon-steady-state vertical velocities of up to 5 m a−1 exceed the vertical surface-parallel flow (SPF) components over much of the ablation area of Storstrømmen, a large outlet glacier from the East Greenland ice sheet. Neglecting a contribution to the vertical velocity of this magnitude results in substantial errors (up to 20%) also on the south–north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments, the steady-state vertical velocity component required to balance the annual ablation rate is 5–10 m a−1 or more. This indicates that the SPF assumption may be problematic also for glaciers in steady state. Here we derive the three-dimensional surface velocity distribution of Storstrømmen by using the principle of mass conservation (MC) to combine InSAR measurements from ascending and descending satellite tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle are in better agreement with the GPS velocities than the previously calculated velocities derived with the SPF assumption.


1999 ◽  
Vol 45 (151) ◽  
pp. 533-538 ◽  
Author(s):  
Niels Reeh ◽  
Søren Nørvang Madsen ◽  
Johan Jakob Mohr

AbstractUntil now, an assumption of surface-parallel glacier flow has been used to express the vertical velocity component in terms of the horizontal velocity vector, permitting all three velocity components to be determined from synthetic aperture radar interferometry. We discuss this assumption, which neglects the influence of the local mass balance and a possible contribution to the vertical velocity arising if the glacier is not in steady state. We find that the mass-balance contribution to the vertical surface velocity is not always negligible as compared to the surface-slope contribution. Moreover, the vertical velocity contribution arising if the ice sheet is not in steady state can be significant. We apply the principle of mass conservation to derive an equation relating the vertical surface velocity to the horizontal velocity vector. This equation, valid for both steady-state and non-steady-state conditions, depends on the ice-thickness distribution. Replacing the surface-parallel-flow assumption with a correct relationship between the surface velocity components requires knowledge of additional quantities such as surface mass balance or ice thickness.


Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 65
Author(s):  
Aditya Dewanto Hartono ◽  
Kyuro Sasaki ◽  
Yuichi Sugai ◽  
Ronald Nguele

The present work highlights the capacity of disparate lattice Boltzmann strategies in simulating natural convection and heat transfer phenomena during the unsteady period of the flow. Within the framework of Bhatnagar-Gross-Krook collision operator, diverse lattice Boltzmann schemes emerged from two different embodiments of discrete Boltzmann expression and three distinct forcing models. Subsequently, computational performance of disparate lattice Boltzmann strategies was tested upon two different thermo-hydrodynamics configurations, namely the natural convection in a differentially-heated cavity and the Rayleigh-Bènard convection. For the purposes of exhibition and validation, the steady-state conditions of both physical systems were compared with the established numerical results from the classical computational techniques. Excellent agreements were observed for both thermo-hydrodynamics cases. Numerical results of both physical systems demonstrate the existence of considerable discrepancy in the computational characteristics of different lattice Boltzmann strategies during the unsteady period of the simulation. The corresponding disparity diminished gradually as the simulation proceeded towards a steady-state condition, where the computational profiles became almost equivalent. Variation in the discrete lattice Boltzmann expressions was identified as the primary factor that engenders the prevailed heterogeneity in the computational behaviour. Meanwhile, the contribution of distinct forcing models to the emergence of such diversity was found to be inconsequential. The findings of the present study contribute to the ventures to alleviate contemporary issues regarding proper selection of lattice Boltzmann schemes in modelling fluid flow and heat transfer phenomena.


Author(s):  
Yiming Han ◽  
Jing Wang ◽  
Xuyang Jin ◽  
Shanshan Wang ◽  
Rui Zhang

Under steady-state pure rolling conditions with low speed, the thickener fiber agglomerations can be maintained for a long time, generating a beneficial thicker film thickness. However, in industrial applications, motions with sliding or transient effects are very common for gears, rolling-element bearings or even chain drives, evaluation of the grease performance under such conditions is vital for determining the lubrication mechanism and designing new greases. In this project, optical interferometry experiments were carried out on a ball-disk test rig to study the disintegration time of the grease thickener agglomerations with the increase of the slide-to-roll ratio under steady-state and reciprocation motions. Under steady-state conditions, the thickener fiber agglomeration can exist for a while and the time becomes shorter with the increase of the slide-to-roll ratio above the critical speed. Below the critical speed, the thickener fiber can exist in the contact in the form of a quite thick film for a very long time under pure rolling conditions but that time is decreased with the increase of the slide-to-roll ratio. The introduction of the transient effect can further reduce the existence time of the thickener.


1989 ◽  
Vol 35 (121) ◽  
pp. 406-417 ◽  
Author(s):  
Niels Reeh

AbstractSimple analytical models are developed in order to study how up-stream variations in accumulation rate and ice thickness, and horizontal convergence/ divergence of the flow influence the age and annual layer-thickness profiles in a steady-state ice sheet. Generally, a decrease/increase of the accumulation rate and an increase/decrease of the ice thickness in the up-stream direction (i.e. opposite to the flow direction) results in older/younger ice at a given depth in the ice sheet than would result if the up-stream accumulation rate and ice thickness were constant along the flow line.Convergence/divergence of the up-stream flow will decrease/increase the effect of the accumulation-rate and ice-thickness gradients, whereas convergence/divergence has no influence at all on the age and layer-thickness profiles if the up-stream accumulation rate and ice thickness are constant along the flow line.A modified column-flow model, i.e. a model for which the strain-rate profile (or, equivalently, the horizontal velocity profile) is constant down to the depth corresponding to the Holocene/Wisconsinan transition 10 750 year BP., seems to work well for dating the ice back to 10 000–11 000 year B P. at sites in the slope regions of the Greenland ice sheet. For example, the model predicts the experimentally determined age profile at Dye 3 on the south Greenland ice sheet with a relative root-mean-square error of only 3% back to c. 10 700 year B.P. As illustrated by the Milcent location on the western slope of the central Greenland ice sheet, neglecting up-stream accumulation-rate and ice-thickness gradients, may lead to dating errors as large as 3000–000 years for c. 10 000 year old ice.However, even if these gradients are taken into account, the simple model fails to give acceptable ages for 10 000 year old ice at locations on slightly sloping ice ridges with strongly divergent flow, as for example the Camp Century location. The main reason for this failure is that the site of origin of the ice cannot be determined accurately enough by the simple models, if the flow is strongly divergent.With this exception, the simple models are well suited for dating the ice at locations where the available data or the required accuracy do not justify application of elaborate numerical models. The formulae derived for the age-depth profiles can easily be worked out on a pocket calculator, and in many cases will be a sensible alternative to using numerical flow models.


1974 ◽  
Vol 36 (1) ◽  
pp. 59-66
Author(s):  
Oscar A. Gómez-Poviña ◽  
Carmen Sainz de Calatroni ◽  
Susana Orden de Puhl ◽  
Mariano J. Guerrero

2006 ◽  
Author(s):  
Zhilin Qi ◽  
Zhimin Du ◽  
Baosheng Liang ◽  
Yong Tang ◽  
Shouping Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document