Taxonomy and biogeography of the Pleistocene New Zealand sea lionNeophoca palatina(Carnivora: Otariidae)

2016 ◽  
Vol 90 (2) ◽  
pp. 375-388 ◽  
Author(s):  
Morgan Churchill ◽  
Robert W. Boessenecker

AbstractThe Otariidae (fur seals and sea lions) are an important and highly visible component of Southern Hemisphere marine mammal faunas. However, fossil material of Southern Hemisphere otariids is comparatively rare and often fragmentary. One exception is the Pleistocene sea lionNeophoca palatinaKing, 1983a, which is known from a nearly complete skull from the North Island of New Zealand. However, the phylogenetic affinities of this taxon are poorly known, and comparisons with other taxa have been limited. We provide an extensive redescription ofNeophoca palatinaand diagnose this taxon using a morphometric approach. Twenty measurements of the skull were collected forN. palatina, as well as for all extant Australasian otariids and several fossilNeophoca cinereaPerón, 1816. Using principal component analysis, we were able to segregate taxa by genus, andN. palatinawas found to cluster withNeophocaaccording to overall size of the skull as well as increased width of the intertemporal constriction and interorbital region.N. palatinacan be distinguished from all other Australasian otariids by its unusually broad basisphenoid. Discriminant function analysis supported referral ofNeophoca palatinatoNeophocawith very high posterior probability. These results confirm the treatment ofNeophoca palatinaas a distinct species ofNeophocaand highlight the former broad distribution and greater tolerance for colder temperatures of this genus. These results also suggest that New Zealand may have played a pivotal role in the diversification of Southern Hemisphere otariid seals.

2021 ◽  
Author(s):  
◽  
Rimpy Kinger

<p>Burnt or fired archaeological artefacts often retain a record of the magnetic field in which they were last heated and cooled. Over the past four years we have collected oriented hangi stones from 10 archaeological sites spread across the North and South Islands of New Zealand. The stones vary in lithology from andesites, originating from the central North Island volcanoes, favoured by Maori for their durability and with remanent magnetization up to 30 A/m, to sandstones and schists from the main axial ranges, with magnetizations as weak as 10-4 A/m. Radiocarbon dating of charcoal fragments retrieved from amongst the stones indicates that the sites span from ca. 1400 AD to the present.  In all cases, we have independently oriented and retrieved several stones, and we have made several samples from each stone, either by drilling (standard cylindrical samples) or sawing (pseudo-cubes) in the laboratory. We have calculated site mean palaeomagnetic directions (Dec between 1.5o and 19.6o and Inc between -52.2o and -68.3o) from principal component analysis of thermal demagnetization and alternating field demagnetization data, discarding the data of stones that show evidence of disturbance after cooling. The directions are in good agreement with recently published palaeosecular variation records from lake sediments. We have carried out palaeointensity experiments using the Coe/Thellier method with pTRM and tail checks, and with selection criteria modified to the situation. Palaeointensities range from 50μT to 77μT. Rock magnetic experiments contribute to our understanding of the mineralogy, domain state and blocking temperature spectra.  We compare our data with predictions of the global field models ARCH3k and gufm1, and suggest that the addition of our new data will improve these models for the SW Pacific region for the most recent time period. Archaeomagnetic measurements are also used to date hangi sites by matching the palaeo-direction to an established archaeomagnetic dating model, NZPSV1k. Archaeomagnetic dating is used to resolve ambiguities in the calibration of radiocarbon dates, and shows up inconsistencies due to unreliable source material for radiocarbon dating. Archaeomagnetic dating and radiocarbon dating results are combined to give the best estimates of the best age of the hangi sites.</p>


2009 ◽  
Vol 22 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Caroline C. Ummenhofer ◽  
Alexander Sen Gupta ◽  
Matthew H. England

Abstract Late twentieth-century trends in New Zealand precipitation are examined using observations and reanalysis data for the period 1979–2006. One of the aims of this study is to investigate the link between these trends and recent changes in the large-scale atmospheric circulation in the Southern Hemisphere. The contributions from changes in Southern Hemisphere climate modes, particularly the El Niño–Southern Oscillation (ENSO) and the southern annular mode (SAM), are quantified for the austral summer season, December–February (DJF). Increasingly drier conditions over much of New Zealand can be partially explained by the SAM and ENSO. Especially over wide parts of the North Island and western regions of the South Island, the SAM potentially contributes up to 80% and 20%–50% to the overall decline in DJF precipitation, respectively. Over the North Island, the contribution of the SAM and ENSO to precipitation trends is of the same sign. In contrast, over the southwest of the South Island the two climate modes act in the opposite sense, though the effect of the SAM seems to dominate there during austral summer. The leading modes of variability in summertime precipitation over New Zealand are linked to the large-scale atmospheric circulation. The two dominant modes, explaining 64% and 9% of the overall DJF precipitation variability respectively, can be understood as local manifestations of the large-scale climate variability associated with the SAM and ENSO.


1999 ◽  
Vol 47 (2) ◽  
pp. 193 ◽  
Author(s):  
B. Bodley ◽  
the late J. R. Mercer ◽  
M. M. Bryden

The inert marker titanium dioxide was added to the food of two male New Zealand fur seals (Arctocephalus forsteri) and three Australian sea lions (Neophoca cinerea) in Taronga Zoo, Sydney, in a series of 15 trials. The enclosures were checked constantly during daylight hours, and defaecation times and location of samples noted. Samples were collected at feeding times, at approximately 0930, 1300 and 1500 hours. During the night the animals were checked at 30-min intervals, the location of samples noted, and samples collected at the first feeding time next morning. Faecal collections were made for up to 50 h after dosing. Marker concentrations in faecal dry matter were determined and mean retention times calculated from the mean concentration-time curves. The mean time between dosing and first recovery of marker (Initial Recovery Time) was 4 h for A. forsteri and 6.5 h for N. cinerea. Mean retention time, a better index of rate of passage of digesta, was 14.6 h for A. forsteri and 14.9 h for N. cinerea. Thus, the marker concentration curves indicated a rapid rate of food transit through the gastrointestinal tract, as has been observed in several (but not all) pinniped species.


2010 ◽  
Vol 58 (2) ◽  
pp. 94 ◽  
Author(s):  
Peter D. Shaughnessy ◽  
Jane McKenzie ◽  
Melanie L. Lancaster ◽  
Simon D. Goldsworthy ◽  
Terry E. Dennis

Australian fur seals (Arctocephalus pusillus doriferus) breed on Bass Strait islands in Victoria and Tasmania. They have been recorded in South Australia (SA) for many years as non-breeding visitors and on Kangaroo Island frequently since 1988, mostly in breeding colonies of the New Zealand fur seal (A. forsteri) which is the most numerous pinniped in SA. Australian fur seals have displaced New Zealand fur seals from sections of the Cape Gantheaume colony on Kangaroo Island. North Casuarina Island produced 29 Australian fur seal pups in February 2008. Australian fur seal pups were larger than New Zealand fur seal pups in the same colony and have been identified genetically using a 263-bp fragment of the mitochondrial DNA control region. North Casuarina Island has been an important breeding colony of New Zealand fur seals, but pup numbers there decreased since 1992–93 (contrary to trends in SA for New Zealand fur seals), while numbers of Australian fur seals there have increased. This study confirms that Australian fur seals breed in SA. The two fur seal species compete for space onshore at several sites. Australian fur seals may compete for food with endangered Australian sea lions (Neophoca cinerea) because both are bottom feeders.


2021 ◽  
Author(s):  
◽  
Rimpy Kinger

<p>Burnt or fired archaeological artefacts often retain a record of the magnetic field in which they were last heated and cooled. Over the past four years we have collected oriented hangi stones from 10 archaeological sites spread across the North and South Islands of New Zealand. The stones vary in lithology from andesites, originating from the central North Island volcanoes, favoured by Maori for their durability and with remanent magnetization up to 30 A/m, to sandstones and schists from the main axial ranges, with magnetizations as weak as 10-4 A/m. Radiocarbon dating of charcoal fragments retrieved from amongst the stones indicates that the sites span from ca. 1400 AD to the present.  In all cases, we have independently oriented and retrieved several stones, and we have made several samples from each stone, either by drilling (standard cylindrical samples) or sawing (pseudo-cubes) in the laboratory. We have calculated site mean palaeomagnetic directions (Dec between 1.5o and 19.6o and Inc between -52.2o and -68.3o) from principal component analysis of thermal demagnetization and alternating field demagnetization data, discarding the data of stones that show evidence of disturbance after cooling. The directions are in good agreement with recently published palaeosecular variation records from lake sediments. We have carried out palaeointensity experiments using the Coe/Thellier method with pTRM and tail checks, and with selection criteria modified to the situation. Palaeointensities range from 50μT to 77μT. Rock magnetic experiments contribute to our understanding of the mineralogy, domain state and blocking temperature spectra.  We compare our data with predictions of the global field models ARCH3k and gufm1, and suggest that the addition of our new data will improve these models for the SW Pacific region for the most recent time period. Archaeomagnetic measurements are also used to date hangi sites by matching the palaeo-direction to an established archaeomagnetic dating model, NZPSV1k. Archaeomagnetic dating is used to resolve ambiguities in the calibration of radiocarbon dates, and shows up inconsistencies due to unreliable source material for radiocarbon dating. Archaeomagnetic dating and radiocarbon dating results are combined to give the best estimates of the best age of the hangi sites.</p>


2015 ◽  
Vol 89 (2) ◽  
pp. 229-253 ◽  
Author(s):  
David Tolmie Merrett ◽  
Simon Ville

From the mid-nineteenth century, raw wool became a global commodity as new producing countries in the Southern Hemisphere supplied the world's growing textile industries in the North. The selling practices of these big-five exporters—Australia, New Zealand, South Africa, Argentina, and Uruguay—ranged from auction through a hybrid of auction and private sale to exclusively private sale. We explore why these countries persisted with different marketing arrangements, contradicting two streams of literature on institutions: isomorphism and the new institutional economics. The article makes several important contributions through blending distinct branches of theory and by focusing on the international constraints to convergence in an earlier period of globalization.


2002 ◽  
Vol 29 (4) ◽  
pp. 363 ◽  
Author(s):  
P. D. Shaughnessy ◽  
A. McKeown

At the Neptune Islands in early February 2000 at the end of the 1999–2000 pupping season, the abundance of New Zealand fur seal pups was determined using a mark–recapture technique in large colonies and by direct counting in small ones. Pups (n = 2355) were marked by clipping hair on the head to reveal light-coloured underfur. At the North Neptune group, there were 4221 pups and at the South Neptune group 1767 pups, making a total of 5988 pups for the Neptune Island group as a whole. At the North Neptune Islands, pup numbers increased by 53% since February 1993, from 2756 to 4221. For the South Neptune group, pup numbers decreased by 6.7%, from 1893 to 1767. The decrease was spread over most colonies on the island. The large increase in pup numbers at the North Neptune group indicates that the population there is in the recolonisation phase of growth; at the South Neptune group, the fur seal population is likely to be in the maturity phase, with fluctuations in size expected in the future. The Neptune Island group supports the largest aggregation of pinnipeds in Australia.


Sign in / Sign up

Export Citation Format

Share Document