A note on integral representations of the Skorokhod map

2016 ◽  
Vol 53 (1) ◽  
pp. 293-298 ◽  
Author(s):  
Patrick Buckingham ◽  
Brian Fralix ◽  
Offer Kella

Abstract We present a very short derivation of the integral representation of the two-sided Skorokhod reflection Z of a continuous function X of bounded variation, which is a generalization of the integral representation of the one-sided map featured in Anantharam and Konstantopoulos (2011) and Konstantopoulos et al. (1996). We also show that Z satisfies a simpler integral representation when additional conditions are imposed on X.

2018 ◽  
Vol 68 (5) ◽  
pp. 1097-1112 ◽  
Author(s):  
Feng Liu

Abstract In this paper we investigate the regularity properties of one-sided fractional maximal functions, both in continuous case and in discrete case. We prove that the one-sided fractional maximal operators $ \mathcal{M}_{\beta}^{+} $ and $ \mathcal{M}_{\beta}^{-} $ map $ W^{1,p}(\mathbb{R}) $ into $ W^{1,q}(\mathbb{R}) $ with 1 <p <∞, 0≤β<1/p and q=p/(1-pβ), boundedly and continuously. In addition, we also obtain the sharp bounds and continuity for the discrete one-sided fractional maximal operators $ M_{\beta}^{+} $ and $ M_{\beta}^{-} $ from $ \ell^{1}(\mathbb{Z}) $ to $ {\rm BV}(\mathbb{Z}) $. Here $ {\rm BV}(\mathbb{Z}) $ denotes the set of all functions of bounded variation defined on ℤ. The results we obtained represent significant and natural extensions of what was known previously.


2018 ◽  
Vol 50 (3) ◽  
pp. 671-705 ◽  
Author(s):  
Giorgio Ferrari ◽  
Shuzhen Yang

AbstractIn this paper we study a finite-fuel two-dimensional degenerate singular stochastic control problem under regime switching motivated by the optimal irreversible extraction problem of an exhaustible commodity. A company extracts a natural resource from a reserve with finite capacity and sells it in the market at a spot price that evolves according to a Brownian motion with volatility modulated by a two-state Markov chain. In this setting, the company aims at finding the extraction rule that maximizes its expected discounted cash flow, net of the costs of extraction and maintenance of the reserve. We provide expressions for both the value function and the optimal control. On the one hand, if the running cost for the maintenance of the reserve is a convex function of the reserve level, the optimal extraction rule prescribes a Skorokhod reflection of the (optimally) controlled state process at a certain state and price-dependent threshold. On the other hand, in the presence of a concave running cost function, it is optimal to instantaneously deplete the reserve at the time at which the commodity's price exceeds an endogenously determined critical level. In both cases, the threshold triggering the optimal control is given in terms of the optimal stopping boundary of an auxiliary family of perpetual optimal selling problems with regime switching.


Author(s):  
Jean Zinn-Justin

Langevin equations for fields have been proposed to describe the dynamics of critical phenomena, or as an alternative method of quantization, which could be useful in cases where ordinary methods lead to difficulties, like in gauge theories. Some of their general properties will be described here. For a number of problems, in particular related to perturbation theory, it is more convenient to work with an action and a field integral than with the equation directly, because standard methods of quantum field theory (QFT) then become available. For this purpose, one can associate a field integral representation, involving a dynamic action to the Langevin equation. The dynamic action can be interpreted as generated by the Langevin equation, considered as a constraint equation. Quite generally, the integral representation of constraint equations, including stochastic equations, leads to an action that has a Slavnov–Taylor (ST) symmetry and, in a different form, has an anticommuting type Becchi–Rouet–Stora–Tyutin (BRST) symmetry, a symmetry that involves anticommuting parameters. This symmetry has no geometric origin, but is merely a consequence of associating a specific form of integral representations to the constraint equations. This symmetry is used in a number of different examples to prove the renormalizability of non-Abelian gauge theories, or to prove the geometric stability of models defined on homogeneous spaces under renormalization. In this chapter, it is used to prove Ward-Takahashi (WT) identities, and to determine how the Langevin equation renormalizes.


1990 ◽  
Vol 42 (3) ◽  
pp. 410-469 ◽  
Author(s):  
Alain Bélanger ◽  
Erik G. F. Thomas

Abstract.The main result of this paper establishes the existence and uniqueness of integral representations of KMS functionals on nuclear *- algebras. Our first result is about representations of *-algebras by means of operators having a common dense domain in a Hilbert space. We show, under certain regularity conditions, that (Powers) self-adjoint representations of a nuclear *-algebra, which admit a direct integral decomposition, disintegrate into representations which are almost all self-adjoint. We then define and study the class of self-derivative algebras. All algebras with an identity are in this class and many other examples are given. We show that if is a self-derivative algebra with an equicontinuous approximate identity, the cone of all positive forms on is isomorphic to the cone of all positive invariant kernels on These in turn correspond bijectively to the invariant Hilbert subspaces of the dual space This shows that if is a nuclear -space, the positive cone of has bounded order intervals, which implies that each positive form on has an integral representation in terms of the extreme generators of the cone. Given a continuous exponentially bounded one-parameter group of *-automorphisms of we can define the subcone of all invariant positive forms satisfying the KMS condition. Central functionals can be viewed as KMS functionals with respect to a trivial group action. Assuming that is a self-derivative algebra with an equicontinuous approximate identity, we show that the face generated by a self-adjoint KMS functional is a lattice. If is moreover a nuclear *-algebra the previous results together imply that each self-adjoint KMS functional has a unique integral representation by means of extreme KMS functionals almost all of which are self-adjoint.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1431
Author(s):  
Junesang Choi ◽  
Recep Şahin ◽  
Oğuz Yağcı ◽  
Dojin Kim

A number of generalized Hurwitz–Lerch zeta functions have been presented and investigated. In this study, by choosing a known extended Hurwitz–Lerch zeta function of two variables, which has been very recently presented, in a systematic way, we propose to establish certain formulas and representations for this extended Hurwitz–Lerch zeta function such as integral representations, generating functions, derivative formulas and recurrence relations. We also point out that the results presented here can be reduced to yield corresponding results for several less generalized Hurwitz–Lerch zeta functions than the extended Hurwitz–Lerch zeta function considered here. For further investigation, among possibly various more generalized Hurwitz–Lerch zeta functions than the one considered here, two more generalized settings are provided.


Author(s):  
Margarida Baía ◽  
José Matias ◽  
Pedro Miguel Santos

We obtain an integral representation of an energy for structured deformations of continua in the space of functions of bounded variation, as a first step to the study of asymptotic models for thin defective crystalline structures, where phenomena as slips, vacancies and dislocations prevent the effectiveness of classical theories.


1992 ◽  
Vol 15 (4) ◽  
pp. 653-657 ◽  
Author(s):  
Vu Kim Tuan ◽  
R. G. Buschman

The generalized hypergeometric function was introduced by Srivastava and Daoust. In the present paper a new integral representation is derived. Similarly new integral representations of Lauricella and Appell function are obtained.


Author(s):  
Francis Noblesse ◽  
Chi Yang ◽  
Dane Hendrix ◽  
Rainald Lo¨hner

The fundamental problem of determining the free-surface potential flow that corresponds to a given flow at a ship hull surface is reconsidered. Stokes’ theorem is used to transform the dipole distribution over the ship hull surface in the classical boundary-integral representation of the velocity potential. This Stokes’ transformation yields a weakly-singular boundary-integral representation that defines the potential in terms of the Green function G and related functions that are no more singular than G. Accordingly, the velocity representation only involves functions that are no more singular than ∇G.


2019 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Dimiter Prodanov

This paper establishes a real integral representation of the reciprocal Gamma function in terms of a regularized hypersingular integral along the real line. A regularized complex representation along the Hankel path is derived. The equivalence with the Heine’s complex representation is demonstrated. For both real and complex integrals, the regularized representation can be expressed in terms of the two-parameter Mittag-Leffler function. Reference numerical implementations in the Computer Algebra System Maxima are provided.


Sign in / Sign up

Export Citation Format

Share Document