scholarly journals COMPLEXITY OF EQUIVALENCE RELATIONS AND PREORDERS FROM COMPUTABILITY THEORY

2014 ◽  
Vol 79 (3) ◽  
pp. 859-881 ◽  
Author(s):  
EGOR IANOVSKI ◽  
RUSSELL MILLER ◽  
KENG MENG NG ◽  
ANDRÉ NIES

AbstractWe study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relationsR,S, a componentwise reducibility is defined byR≤S⇔ ∃f∀x, y[x R y↔f(x)S f(y)].Here,fis taken from a suitable class of effective functions. For us the relations will be on natural numbers, andfmust be computable. We show that there is a${\rm{\Pi }}_1^0$-complete equivalence relation, but no${\rm{\Pi }}_k^0$-complete fork≥ 2. We show that${\rm{\Sigma }}_k^0$preorders arising naturally in the above-mentioned areas are${\rm{\Sigma }}_k^0$-complete. This includes polynomial timem-reducibility on exponential time sets, which is${\rm{\Sigma }}_2^0$, almost inclusion on r.e. sets, which is${\rm{\Sigma }}_3^0$, and Turing reducibility on r.e. sets, which is${\rm{\Sigma }}_4^0$.

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 329
Author(s):  
Tomoyuki Morimae ◽  
Suguru Tamaki

It is known that several sub-universal quantum computing models, such as the IQP model, the Boson sampling model, the one-clean qubit model, and the random circuit model, cannot be classically simulated in polynomial time under certain conjectures in classical complexity theory. Recently, these results have been improved to ``fine-grained" versions where even exponential-time classical simulations are excluded assuming certain classical fine-grained complexity conjectures. All these fine-grained results are, however, about the hardness of strong simulations or multiplicative-error sampling. It was open whether any fine-grained quantum supremacy result can be shown for a more realistic setup, namely, additive-error sampling. In this paper, we show the additive-error fine-grained quantum supremacy (under certain complexity assumptions). As examples, we consider the IQP model, a mixture of the IQP model and log-depth Boolean circuits, and Clifford+T circuits. Similar results should hold for other sub-universal models.


2016 ◽  
Vol 81 (4) ◽  
pp. 1225-1254 ◽  
Author(s):  
RUSSELL MILLER ◽  
KENG MENG NG

AbstractWe introduce the notion of finitary computable reducibility on equivalence relations on the domainω. This is a weakening of the usual notion of computable reducibility, and we show it to be distinct in several ways. In particular, whereas no equivalence relation can be${\rm{\Pi }}_{n + 2}^0$-complete under computable reducibility, we show that, for everyn, there does exist a natural equivalence relation which is${\rm{\Pi }}_{n + 2}^0$-complete under finitary reducibility. We also show that our hierarchy of finitary reducibilities does not collapse, and illustrate how it sharpens certain known results. Along the way, we present several new results which use computable reducibility to establish the complexity of various naturally defined equivalence relations in the arithmetical hierarchy.


2016 ◽  
Vol 28 (3) ◽  
pp. 448-456 ◽  
Author(s):  
ANDREW MARKS

We show that polynomial time Turing equivalence and a large class of other equivalence relations from computational complexity theory are universal countable Borel equivalence relations. We then discuss ultrafilters on the invariant Borel sets of these equivalence relations which are related to Martin's ultrafilter on the Turing degrees.


2005 ◽  
Vol 70 (3) ◽  
pp. 979-992 ◽  
Author(s):  
Greg Hjorth

This note answers a questions from [2] by showing that considered up to Borel reducibility, there are more essentially countable Borel equivalence relations than countable Borel equivalence relations. Namely:Theorem 0.1. There is an essentially countable Borel equivalence relation E such that for no countable Borel equivalence relation F (on a standard Borel space) do we haveThe proof of the result is short. It does however require an extensive rear guard campaign to extract from the techniques of [1] the followingMessy Fact 0.2. There are countable Borel equivalence relationssuch that:(i) eachExis defined on a standard Borel probability space (Xx, μx); each Ex is μx-invariant and μx-ergodic;(ii) forx1 ≠ x2 and A μxι -conull, we haveExι/Anot Borel reducible toEx2;(iii) if f: Xx → Xxis a measurable reduction ofExto itself then(iv)is a standard Borel space on which the projection functionis Borel and the equivalence relation Ê given byif and only ifx = x′ andzExz′ is Borel;(V)is Borel.We first prove the theorem granted this messy fact. We then prove the fact.(iv) and (v) are messy and unpleasant to state precisely, but are intended to express the idea that we have an effective parameterization of countable Borel equivalence relations by points in a standard Borel space. Examples along these lines appear already in the Adams-Kechris constructions; the new feature is (iii).Simon Thomas has pointed out to me that in light of theorem 4.4 [5] the Gefter-Golodets examples of section 5 [5] also satisfy the conclusion of 0.2.


2002 ◽  
Vol 67 (4) ◽  
pp. 1520-1540 ◽  
Author(s):  
Greg Hjorth

In this note we show:Theorem 1.1. Let G be a Polish group and X a Polish G-space with the induced orbit equivalence relation EG Borel as a subset of X × X. Then exactly one of the following:(I) There is a countable languageℒand a Borel functionsuch that for all x1, x2 ∈ Xor(II) there is a turbulent Polish G-space Y and a continuous G-embeddingThere are various bows and ribbons which can be woven into these statements. We can strengthen (I) by asking that θ also admit a Borel orbit inverse, that is to say some Borel functionfor some Borel set B ⊂ Mod(ℒ), such that for all x ∈ Xand then after having passed to this strengthened version of (I) we still obtain the exact same dichotomy theorem, and hence the conclusion that the two competing versions of (I) are equivalent. Similarly (II) can be relaxed to just asking that τ be a Borel G-embedding, or even simply a Borel reduction of the relevant orbit equivalence relations. It is in fact a consequence of 1.1 that all the plausible weakenings and strengthenings of (I) and (II) are respectively equivalent to one another.I will not closely examine these possible variations here. The equivalences alluded to above follow from our main theorem and the results of [3]. That monograph had previously shown that (I) and (II) are incompatible, and proved a barbaric forerunner of 1.1, and gone on to conjecture the dichotomy result above.


2017 ◽  
Vol 82 (3) ◽  
pp. 893-930 ◽  
Author(s):  
WILLIAM CHAN

AbstractThe following will be shown: Let I be a σ-ideal on a Polish space X so that the associated forcing of I+${\bf{\Delta }}_1^1$ sets ordered by ⊆ is a proper forcing. Let E be a ${\bf{\Sigma }}_1^1$ or a ${\bf{\Pi }}_1^1$ equivalence relation on X with all equivalence classes ${\bf{\Delta }}_1^1$. If for all $z \in {H_{{{\left( {{2^{{\aleph _0}}}} \right)}^ + }}}$, z♯ exists, then there exists an I+${\bf{\Delta }}_1^1$ set C ⊆ X such that E ↾ C is a ${\bf{\Delta }}_1^1$ equivalence relation.


2003 ◽  
Vol 68 (3) ◽  
pp. 740-750 ◽  
Author(s):  
Kosta Došen ◽  
Zoran Petrić

AbstractThe generality of a derivation is an equivalence relation on the set of occurrences of variables in its premises and conclusion such that two occurrences of the same variable are in this relation if and only if they must remain occurrences of the same variable in every generalization of the derivation. The variables in question are propositional or of another type. A generalization of the derivation consists in diversifying variables without changing the rules of inference.This paper examines in the setting of categorial proof theory the conjecture that two derivations with the same premises and conclusions stand for the same proof if and only if they have the same generality. For that purpose generality is defined within a category whose arrows are equivalence relations on finite ordinals, where composition is rather complicated. Several examples are given of deductive systems of derivations covering fragments of logic, with the associated map into the category of equivalence relations of generality.This category is isomorphically represented in the category whose arrows are binary relations between finite ordinals, where composition is the usual simple composition of relations. This representation is related to a classical representation result of Richard Brauer.


1987 ◽  
Vol 52 (3) ◽  
pp. 689-697
Author(s):  
Nader Vakil

AbstractLet (*X, *T) be the nonstandard extension of a Hausdorff space (X, T). After Wattenberg [6], the monad m(x) of a near-standard point x in *X is defined as m{x) = μT(st(x)). Consider the relationFrank Wattenberg in [6] and [7] investigated the possibilities of extending the domain of Rns to the whole of *X. Wattenberg's extensions of Rns were required to be equivalence relations, among other things. Because the nontrivial ways of constructing such extensions usually produce monadic relations, the said condition practically limits (to completely regular spaces) the class of spaces for which such extensions are possible. Since symmetry and transitivity are not, after all, characteristics of the kind of nearness that is obtained in a general topological space, it may be expected that if these two requirements are relaxed, then a monadic extension of Rns to *X should be possible in any topological space. A study of such extensions of Rns is the purpose of the present paper. We call a binary relation W ⊆ *X × *X an infinitesimal on *X if it is monadic and reflexive on *X. We prove, among other things, that the existence of an infinitesimal on *X that extends Rns is equivalent to the condition that the space (X, T) be regular.


2008 ◽  
Vol 18 (02) ◽  
pp. 407-427 ◽  
Author(s):  
JOHN W. ALDIS

Following Golubitsky, Stewart, and others, we give definitions of networks and input trees. In order to make our work as general as possible, we work with a somewhat extended notion of multiplicity, and introduce the concept of "bunching" of trees. We then define balanced equivalence relations on networks, and a partial ordering on these relations. Previous work has shown that there is a maximal balanced equivalence relation on networks of certain classes: we provide a different style of proof which gives this result for any network. We define two algorithms to determine this relation in practice on a given finite network — one for use with networks with all multiplicities equal, and a second for the more general case. We then provide illustrative examples of each algorithm in use. We show both of these algorithms to be quartic in the size of the given network.


2021 ◽  
pp. 1-10
Author(s):  
Narjes Firouzkouhi ◽  
Abbas Amini ◽  
Chun Cheng ◽  
Mehdi Soleymani ◽  
Bijan Davvaz

Inspired by fuzzy hyperalgebras and fuzzy polynomial function (term function), some homomorphism properties of fundamental relation on fuzzy hyperalgebras are conveyed. The obtained relations of fuzzy hyperalgebra are utilized for certain applications, i.e., biological phenomena and genetics along with some elucidatory examples presenting various aspects of fuzzy hyperalgebras. Then, by considering the definition of identities (weak and strong) as a class of fuzzy polynomial function, the smallest equivalence relation (fundamental relation) is obtained which is an important tool for fuzzy hyperalgebraic systems. Through the characterization of these equivalence relations of a fuzzy hyperalgebra, we assign the smallest equivalence relation α i 1 i 2 ∗ on a fuzzy hyperalgebra via identities where the factor hyperalgebra is a universal algebra. We extend and improve the identities on fuzzy hyperalgebras and characterize the smallest equivalence relation α J ∗ on the set of strong identities.


Sign in / Sign up

Export Citation Format

Share Document