Stimulation-induced side effects after deep brain stimulation – a systematic review

2019 ◽  
Vol 32 (2) ◽  
pp. 57-64
Author(s):  
Marcin Zygmunt Zarzycki ◽  
Izabela Domitrz

AbstractObjective:Deep brain stimulation (DBS) was approved by Food and Drug Administration for Parkinson’s disease, essential tremor, primary generalised or segmental dystonia and obsessive-compulsive disorder (OCD) treatment. The exact mechanism of DBS remains unclear which causes side effects. The aim of this review was to assess variables causing stimulation-induced chronic psychiatric/personality-changing side effects.Methods:The analysis of scientific database (PubMed, Cochrane Library, EMBASE) was conducted. The included articles had to be research study or case report and DBS to be conducted in therapeutic purposes. The researches with mental disorders in patients’ medical histories were excluded.Results:Seventeen articles were used in the review. In the group of movement disorders the characteristic of side effects was strongly related to the placement of the electrode implantation. Tiredness/fatigue was correlated with DBS in thalamus. Implantations in subthalamic nucleus were mostly followed by affective side effects such as depression or suicide. The higher voltage of electrode was connected with more severe depression after implantation. The analysis of affective disorder contained only three articles – two about OCD and one about depression. Forgetfulness and word-finding problems as activities connected with cognition may be an inevitable side effect if obsessive thoughts are to be inhibited.Conclusion:DBS of subthalamic nucleus should be seen as the most hazardous place of implantation. As a result there is a strong need of ‘gold standards’ based on the connectivity research and closer cooperation of scientists and clinicians.

Author(s):  
Chencheng Zhang ◽  
Linbin Wang ◽  
Wei Hu ◽  
Tao Wang ◽  
Yijie Zhao ◽  
...  

Abstract BACKGROUND Subthalamic nucleus (STN) and globus pallidus interna (GPi) are the most effective targets in deep brain stimulation (DBS) treatment for Parkinson disease (PD). However, the individualized selection of targets remains a clinical challenge. OBJECTIVE To combine unilateral STN and contralateral GPi stimulation (STN DBS in one brain hemisphere and GPi DBS in the other) to maximize the clinical advantages of each target while inducing fewer adverse side effects in selected patients with PD because each target has its own clinical effects and risk profiles. METHODS We reviewed the clinical outcomes of 8 patients with idiopathic PD treated with combined unilateral STN and contralateral GPi DBS. Clinical outcome assessments, focusing on motor and nonmotor symptoms, were performed at baseline and 6-mo and 12-mo follow-up. We performed the assessments under the following conditions: medication on and off (bilateral stimulation on and off and unilateral STN stimulation on). RESULTS Patients showed a significant improvement in motor symptoms, as assessed by the Unified Parkinson Disease Rating Scale III (UPDRS-III) and Timed Up-and-Go Test (TUG), in the off-medication/on-stimulation state at 6-mo and 12-mo follow-up. Also, patients reported a better quality of life, and their intake of levodopa was reduced at 12-mo follow-up. In the on-medication condition, bilateral stimulation was associated with an improvement in axial symptoms, with a 64% improvement in measures of gait and falls at 12-mo follow-up. No irreversible adverse side effects were observed. CONCLUSION Our findings suggest that combined unilateral STN and contralateral GPi DBS could offer an effective and well-tolerated DBS treatment for certain PD patients.


2020 ◽  
Vol 91 (12) ◽  
pp. 1349-1356
Author(s):  
Stephan Chabardes ◽  
Paul Krack ◽  
Brigitte Piallat ◽  
Thierry Bougerol ◽  
Eric Seigneuret ◽  
...  

BackgroundObsessive–compulsive disorder (OCD) is a major cause of disability in western country and responsible for severe impairment of quality of life. About 10% of patients present with severe OCD symptoms and require innovative treatment such as deep brain stimulation (DBS). Among possible targets, the non-motor subthalamic nucleus (STN) is a key node of the basal ganglia circuitry, strongly connected to limbic cortical areas known to be involved in OCD.MethodWe analysed, in a prospective, observational, monocentric, open label cohort, the effect of chronic non-motor STN-DBS in 19 patients with treatment-resistant OCD consecutively operated in a single centre. Severity of OCD was evaluated using the Yale and Brown Obsessive–Compulsive Scale (YBOCS). YBOCS scores at 6, 12 and 24 months postoperatively were compared with baseline. Responders were defined by >35% improvement of YBOCS scores. Global Assessment Functioning (GAF) scale was used to evaluate the impact of improvement.ResultsAt a 24-month follow-up, the mean YBOCS score improved by 53.4% from 33.3±3.5 to 15.8±9.1 (95% CI 11.2–20.4; p<0.0001). Fourteen out of 19 patients were considered as responders, 5 out of 19 being improved over 75% and 10 out of 19 over 50%. GAF scale improved by 92% from 34.1±3.9 to 66.4±18.8 (95% CI 56.7–76.1; p=0.0003). The most frequent adverse events consisted of transient DBS-induced hypomania and anxiety.ConclusionChronic DBS of the non-motor STN is an effective and relatively safe procedure to treat severe OCD resistant to conventional management.


2020 ◽  
pp. 155-160
Author(s):  
Svjetlana Miocinovic ◽  
Pravin Khemani ◽  
Rebecca Whiddon ◽  
Shilpa Chitnis

Interleaving is a DBS programming method whereby two sets of stimulation parameters are applied interchangeably (on a millisecond level). This chapter describes a patient with Parkinson disease who was implanted with subthalamic nucleus deep brain stimulation but achieved suboptimal tremor control with conventional programming (monopolar, double monopolar, or bipolar settings). Interleaving allowed the dorsal contact to be set to a higher setting, while the contact below was set to a tolerable lower setting. Together, the two contacts provided complete tremor resolution without side effects. It is unknown whether interleaving provides any additional advantage over simply allowing use of different amplitudes at different contacts, but potential mechanisms are discussed.


2020 ◽  
Vol 131 (6) ◽  
pp. 1221-1229
Author(s):  
Zachary T. Irwin ◽  
Mohammad Z. Awad ◽  
Christopher L. Gonzalez ◽  
Arie Nakhmani ◽  
J.Nicole Bentley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document