Deep-sea ostracod faunal dynamics in a marginal sea: biotic response to oxygen variability and mid-Pleistocene global changes

Paleobiology ◽  
2018 ◽  
Vol 45 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Huai-Hsuan May Huang ◽  
Moriaki Yasuhara ◽  
Hokuto Iwatani ◽  
Tatsuhiko Yamaguchi ◽  
Katsura Yamada ◽  
...  

AbstractDeep-sea benthic ostracod assemblages covering the last 2 Myr were investigated in Integrated Ocean Drilling Program Site U1426 (at 903 m water depth) in the southern Sea of Japan. Results show that (1) orbital-scale faunal variability has been influenced by eustatic sea-level fluctuations and oxygen variability and (2) secular-scale faunal transitions are likely associated with the mid-Brunhes event (MBE, ~0.43 Ma) and the onset of the Tsushima Warm Current (TWC, ~1.7 Ma).Krithe,Robertsonites, andAcanthocythereisare the three most abundant genera throughout the core, accounting for 78.5% of total specimens. Multiple-regression tree analysis indicated that the TWC, the MBE, and oxygen content are the significant controlling factors of ostracod dominance. Changes in assemblages exhibit decline and recovery patterns corresponding to orbital-scale cyclicity of sea-level changes. In the Sea of Japan marginal ocean setting, this cyclicity shows a close relationship with bottom-water oxygen variability since the onset of the TWC influx. The MBE amplified the influence of the TWC and oxygen variability to the deep-sea ecosystem through larger sea-level fluctuations.Acanthocythereis dunelmensis, a circumpolar species, dominates before the TWC onset. After the TWC onset and during the mid-Pleistocene transition (MPT, ~1.2–0.7 Ma)Krithespp., known for their low-oxygen tolerance, substantially increase under moderate oxygen depletion. At the end of the MPT,Krithedominance diminishes and is replaced byRobertsonites hanaiiandPropontocyprisspp. after the MBE. The post-MBE assemblage, characterized byR. hanaii, suggests a slightly warmer environment under the development of the TWC. In addition, the post-MBE high-amplitude climate system may have caused the increased abundance of active-swimmingPropontocyprisspp. due to their superior migration ability. Benthic ecosystems in marginal seas are sensitive and vulnerable to both short- and long-term climatic changes, and the MBE is suggested to be a global biotic event affecting benthic ecosystems substantially.

Radiocarbon ◽  
2021 ◽  
pp. 1-15
Author(s):  
Julia Caon Araujo ◽  
Kita Chaves Damasio Macario ◽  
Vinícius Nunes Moreira ◽  
Anderson dos Santos Passos ◽  
Perla Baptista de Jesus ◽  
...  

ABSTRACT The vermetidae fossils of Petaloconchus varians, formed by calcium carbonate, associated with their radiocarbon ages, are the most accurate indicators of paleo sea level due to their restricted occupation in the intertidal zone in the rocky shore. However, the recrystallization of minerals can affect these age calculations and, consequently, the interpretation of the data. The aim of this study is to present new indicators of paleo sea-level changes in Southeast Brazil for the last 6000 years contributing to fill the data gap for the late Holocene. The influence of the recrystallization process was successfully resolved using the CarDS protocol, enabling the separation of the original aragonite fraction by density, prior to radiocarbon dating. This avoids the rejuvenation of ages and ensures greater efficiency for data interpretation. Paleo sea-level indicators were able to show a progressive increase in sea level up to the transgressive maximum of 4.15 m in 3700 BP years, followed by a regression to the current zero. This regression seems to have in addition, here we reinforce the reliability of the use of fossil vermetids as indicators of sea-level fluctuations.


2016 ◽  
Vol 155 (3) ◽  
pp. 729-746 ◽  
Author(s):  
SHERIF FAROUK ◽  
SREEPAT JAIN

AbstractThe Maastrichtian–Danian benthic foraminiferal diversity and assemblages through sequence stratigraphy were studied at Dakhla Oasis, Egypt. Benthic foraminifera numbers (BFN), high-flux species and characteristic benthic foraminiferal species and genera distribution are also incorporated to assess palaeobathymetry, palaeoenvironment and palaeoproductivity. All these proxies are then taken together to construct a sea-level curve and interpreted in terms of regional tectonics, climate and eustasy. Data suggest a remarkably highly equitable benthic environment deposited in a brackish littoral and/or marsh setting with moderate (?) to low oxygen conditions and reduced salinity (oligotrophic), possibly due to increased precipitation and terrestrial runoff. The interrupted dominance of calcareous forms and high-organic-flux species suggests occasional marine incursions and high palaeoproductivity, due to local upwelling. The inferred sea-level curve replicates the global eustatic curve and suggests that the curve is more influenced by the prevailing climate and global eustasy rather than by regional tectonics. The post-Cretaceous–Palaeogene boundary displays improvement in the environment in terms of diversity and number of species and specimens, with a marked reduction in the abundance of high-organic-flux species during early Paleocene (Danian) time, indicating a shift from a more mesotrophic open marine environment to much reduced oligotrophic conditions.


Clay Minerals ◽  
1993 ◽  
Vol 28 (1) ◽  
pp. 61-84 ◽  
Author(s):  
M. Thiry ◽  
T. Jacquin

AbstractThe distribution of clay minerals from the N and S Atlantic Cretaceous deep-sea sediments is related to rifting, sea-floor spreading, sea-level variations and paleoceanography. Four main clay mineral suites were identified: two are inherited and indicative of ocean geodynamics, whereas the others result from transformation and authigenesis and are diagnostic of Cretaceous oceanic depositional environments. Illite and chlorite, together with interstratified illite-smectite and smectite occur above the sea-floor basalts and illustrate the contribution of volcanoclastic materials of basaltic origin to the sediments. Kaolinite, with variable amounts of illite, chlorite, smectite and interstratified minerals, indicates detrital inputs from continents near the platform margins. Kaolinite decreases upward in the series due to open marine environments and basin deepening. It may increase in volume during specific time intervals corresponding to periods of falling sea-level during which overall facies regression and erosion of the surrounding platforms occurred. Smectite is the most abundant clay mineral in the Cretaceous deep-sea sediments. Smectite-rich deposits correlate with periods of relatively low sedimentation rates. As paleoweathering profiles and basal deposits at the bottom of Cretaceous transgressive formations are mostly kaolinitic, smectite cannot have been inherited from the continents. Smectite is therefore believed to have formed in the ocean by transformation and recrystallization of detrital materials during early diagenesis. Because of the slow rate of silicate reactions, transformation of clay minerals requires a long residence time of the particles at the water/sediment interface; this explains the relationships between the observed increases in smectite with long-term sea-level rises that tend to starve the basinal settings of sedimentation. Palygorskite, along with dolomite, is relatively common in the N and S Atlantic Cretaceous sediments. It is not detrital because correlative shelf deposits are devoid of palygorskite. Palygorskite is diagnostic of Mg-rich environments and is indicative of the warm and hypersaline bottom waters of the Cretaceous Atlantic ocean.


2021 ◽  
pp. 1-64
Author(s):  
Oussama Abidi ◽  
Kawthar Sebei ◽  
Adnen Amiri ◽  
Haifa Boussiga ◽  
Imen Hamdi Nasr ◽  
...  

The Middle to Upper Eocene series are characterized by multiple hiatuses related to erosion, non-deposition or condensed series in the Cap Bon and Gulf of Hammamet provinces. We performed an integrated study taking advantage from surface and subsurface geology, faunal content, borehole logs, electrical well logs, vertical seismic profiles and surface seismic sections. Calibrated seismic profiles together with borehole data analysis reveal unconformities with deep erosion, pinchouts, normal faulting and basin inversion which are dated Campanian, intra-Lutetian and Priabonian compressive phases; these events were also described at the regional scale in Tunisia. Tectonics, sea level fluctuations and climate changes closely controlled the depositional process during the Middle to Upper Eocene time. The depositional environment ranges from internal to outer platform separated by an inherited paleo-high. We determine eight third order sequences characterizing the interaction between tectonic pulsations, sea level changes and the developed accommodation space within the Middle to Upper Eocene interval. We correlate the obtained results of the Cap Bon-Gulf of Hammamet provinces with the published global charts of sea-level changes and we find a good correspondence across third order cycles. Model-based 3D inversion proved to be a solution to model the lateral and vertical lithological distribution of the Middle to Upper Eocene series.


2019 ◽  
Vol 498 (1) ◽  
pp. 9-38 ◽  
Author(s):  
Benjamin Sames ◽  
M. Wagreich ◽  
C. P. Conrad ◽  
S. Iqbal

AbstractA review of short-term (<3 myr: c. 100 kyr to 2.4 myr) Cretaceous sea-level fluctuations of several tens of metres indicates recent fundamental progress in understanding the underlying mechanisms for eustasy, both in timing and in correlation. Cretaceous third- and fourth-order hothouse sea-level changes, the sequence-stratigraphic framework, are linked to Milankovitch-type climate cycles, especially the longer-period sequence-building bands of 405 kyr and 1.2 myr. In the absence of continental ice sheets during Cretaceous hothouse phases (e.g. Cenomanian–Turonian), growing evidence indicates groundwater-related sea-level cycles: (1) the existence of Milankovitch-type humid-arid climate oscillations, proven via intense humid weathering records during times of regression and sea-level lowstands; (2) missing or inverse relationships of sea-level and the marine δ18O archives, i.e. the lack of a pronounced positive excursion, cooling signal during sea-level lowstands; and (3) the anti-phase relationship of sea and lake levels, attesting to high groundwater levels and charged continental aquifers during sea-level lowstands. This substantiates the aquifer-eustasy hypothesis. Rates of aquifer-eustatic sea-level change remain hard to decipher; however, reconstructions range from a very conservative minimum estimate of 0.04 mm a−1 (longer time intervals) to 0.7 mm a−1 (shorter, probably asymmetric cycles). Remarkably, aquifer-eustasy is recognized as a significant component for the Anthropocene sea-level budget.


1999 ◽  
Vol 36 (10) ◽  
pp. 1617-1643 ◽  
Author(s):  
Rebecca A Stritch ◽  
Claudia J Schröder-Adams

Albian foraminiferal assemblages from three wells in northwestern (Imperial Spirit River No. 1, 12-20-78-6W6), central (AngloHome C&E Fort Augustus No. 1, 7-29-55-21W4), and southern Alberta (Amoco B1 Youngstown, 6-34-30-8W4) provide the basis to track a fluctuating sea-level history in western Canada. Two global second-order marine cycles (Kiowa - Skull Creek and Greenhorn) were punctuated by higher frequency relative sea-level cycles expressed during the time of the Moosebar-Clearwater, Hulcross, Joli Fou, and Mowry seas. A total of 34 genera and 93 subgeneric taxa are recognized in these Albian-age strata. Foraminiferal abundance and species diversity of the latest Albian Mowry Sea were higher than in the early to middle Albian Moosebar-Clearwater and Hulcross seas. The two earliest paleo-seas were shallow embayments of the Boreal Sea, and relative sea-level fluctuations caused variable marine to brackish conditions expressed in a variety of faunal assemblages. Towards the late Albian, relative sea level rose, deepening the basin and establishing increased marine conditions and more favourable habitats for foraminifera. In the deeper Joli Fou Seaway and Mowry Sea, however, reduced bottom water oxygen through stratification or stagnant circulation caused times of diminished benthic faunas. The Bluesky Formation in northwestern Alberta contains the initial transgression of the early Albian Moosebar-Clearwater Sea and is marked by a sudden faunal increase. In contrast, transgression by the late late Albian Mowry Sea was associated with a gradual increase of foraminiferal faunas. Numerous agglutinated species range throughout the entire Albian, absent only at times of basin shallowing. However, each major marine incursion throughout the Albian introduced new taxa.


2019 ◽  
Vol 498 (1) ◽  
pp. 233-255 ◽  
Author(s):  
Holger Gebhardt ◽  
Samuel O. Akande ◽  
Olabisi A. Adekeye

AbstractThe Benue Trough formed in close relation to the opening of the South Atlantic and experienced sea-level fluctuations of different magnitudes during the Cenomanian to Coniacian interval. We identify depositional environments from outcrop sections and a drilling as control record. Lines of evidence for the interpretation include facies analyses, foraminiferal assemblage composition (P/B-ratio) and the presence of planktonic deep-water indicators. While the analysis of the well data from the Dahomey Basin indicates a continuous deep-water (bathyal) environment, the succession in the Nkalagu area of the Lower Benue Trough evolved in a different and more complex way. Beginning with latest Cenomanian shoreface to shelf deposits, a long period of subsidence lasted until the middle Turonian when pelagic shales and calcareous turbidites were deposited at upper to middle bathyal depths. These conditions continued during late Turonian and Coniacian times. The general deepening trend of the Lower Benue Trough was mainly controlled by tectonic subsidence and was superimposed by eustatic sea-level changes, resulting in periodically changing palaeowater depths. We were able to identify eight sea-level rises and falls that can be attributed to 405 kyr eccentricity cycles. The amplitudes of the sea-level changes were most likely in the range of several tens to a few hundred metres. The deposition of carbonate turbidites at Nkalagu was probably triggered by eustatic sea-level lowstands.


2020 ◽  
Vol 157 (8) ◽  
pp. 1333-1348
Author(s):  
Jun Li ◽  
Zhong Han ◽  
Xingyue Wen ◽  
Gregory J. Retallack ◽  
Chengmin Huang

AbstractTwo upper Middle Permian palaeosols, consisting of coal and pyrite intercalated with a 20 cm thick limestone, were found near Mount Emei in the SW Sichuan Basin, China. The macro- and micromorphology and physico-chemical properties, in conjunction with the mineralogical composition of the palaeosol horizons were investigated. This type of palaeosol is common within the Permian intertidal facies of the Upper Yangtze Craton. The section reflects fluctuations within the range of 0–25 m in relative sea-level, with the depositional environment changing from shallow-marine to littoral, followed by tidal-flat to littoral, and finally to continental volcanic rocks, based on a combination of palaeopedological and carbonate microfacies analyses. Such short-term relative sea-level fluctuations in late Middle Permian times in the SW Sichuan Basin of South China are consistent with the long-term falling trend on a global scale in late Middle Permian times, and may be related to regionally variable subsidence and global cooling. The combination of coastal palaeosol and carbonate microfacies analyses is proposed as an additional tool for estimating the amplitude of sea-level changes.


2019 ◽  
Vol 498 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Michael Wagreich ◽  
Benjamin Sames ◽  
Malcolm Hart ◽  
Ismail O. Yilmaz

AbstractThe International Geoscience Programme Project IGCP 609 addressed correlation, causes and consequences of short-term sea-level fluctuations during the Cretaceous. Processes causing several ka to several Ma (third- to fourth-order) sea-level oscillations during the Cretaceous are so far poorly understood. IGCP 609 proved the existence of sea-level cycles during potential ice sheet-free greenhouse to hothouse climate phases. These sea-level fluctuations were most probably controlled by aquifer-eustasy that is altering land-water storage owing to groundwater aquifer charge and discharge. The project investigated Cretaceous sea-level cycles in detail in order to differentiate and quantify both short- and long-term records based on orbital cyclicity. High-resolution sea-level records were correlated to the geological timescale resulting in a hierarchy of sea-level cycles in the longer Milankovitch band, especially in the 100 ka, 405 ka, 1.2 Ma and 2.4 Ma range. The relation of sea-level highs and lows to palaeoclimate events, palaeoenvironments and biota was also investigated using multiproxy studies. For a hothouse Earth such as the mid-Cretaceous, humid–arid climate cycles controlling groundwater-related sea-level change were evidenced by stable isotope data, correlation to continental lake-level records and humid–arid weathering cycles.


Sign in / Sign up

Export Citation Format

Share Document