scholarly journals Dynamical Monte Carlo Simulations of 3-D Galactic Systems in Axisymmetric and Triaxial Potentials

Author(s):  
Ali Taani ◽  
Juan C. Vallejo

AbstractWe describe the dynamical behavior of isolated old ( ⩾ 1Gyr) objects-like Neutron Stars (NSs). These objects are evolved under smooth, time-independent, gravitational potentials, axisymmetric and with a triaxial dark halo. We analysed the geometry of the dynamics and applied the Poincaré section for comparing the influence of different birth velocities. The inspection of the maximal asymptotic Lyapunov (λ) exponent shows that dynamical behaviors of the selected orbits are nearly the same as the regular orbits with 2-DOF, both in axisymmetric and triaxial when (ϕ, qz)= (0,0). Conversely, a few chaotic trajectories are found with a rotated triaxial halo when (ϕ, qz)= (90, 1.5). The tube orbits preserve direction of their circulation around either the long or short axis as appeared in the triaxial potential, even when every initial condition leads to different orientations. The Poincaré section shows that there are 2-D invariant tori and invariant curves (islands) around stable periodic orbits that bound to the surface of 3-D tori. The regularity of several prototypical orbits offer the means to identify the phase-space regions with localized motions and to determine their environment in different models, because they can occupy significant parts of phase-space depending on the potential. This is of particular importance in Galactic Dynamics.

2021 ◽  
Author(s):  
Shuning Deng ◽  
Jinchen Ji ◽  
Guilin Wen ◽  
Huidong Xu

Abstract Understanding of dynamical behavior in the parameter-state space plays a vital role in the optimal design and motion control of mechanical governor systems. By combining the GPU parallel computing technique with two determinate indicators, namely, the Lyapunov exponents and Poincaré section, this paper presents a detailed study on the two-parameter dynamics of a mechanical governor system with different time delays. By identifying different system responses in two-parameter plane, it is shown that the complexity of evolutionary process can increase significantly with the increase of time delay. The path-following strategy and the time domain collocation method are used to explore the details of the evolutionary process. An interesting phenomenon is found in the dynamical behavior of the delayed governor system, which can cause the inconsistency between the number of intersection points of certain periodic response on Poincaré section and the actual period characteristic. For example, the commonly exhibited period-1 orbit may have two or more intersection points on the Poincaré section instead of one point. Furthermore, the variations of basins of attraction are also discussed in the plane of initial history conditions to demonstrate the observed multistability phenomena and chaotic transitions.


2001 ◽  
Vol 11 (03) ◽  
pp. 755-779 ◽  
Author(s):  
RYOICHI WADA ◽  
KAZUTOSHI GOHARA

Fractals and closures of two-dimensional linear dynamical systems excited by temporal inputs are investigated. The continuous dynamics defined by the set of vector fields in the cylindrical phase space is reduced to the discrete dynamics defined by the set of iterated functions on the Poincaré section. When all iterated functions are contractions, it has already been shown theoretically that a trajectory in the cylindrical phase space converges into an attractive invariant set with a fractal-like structure. Calculating analytically the Lipschitz constants of iterated functions, we show that, under some conditions, noncontractions often appear. However, we numerically show that, even for noncontractions, an attractive invariant set with a fractal-like structure exists. By introducing the interpolating system, we can also show that the set of trajectories in the cylindrical phase space is enclosed by the tube structure whose initial set is the closure of the fractal set on the Poincaré section.


2020 ◽  
Vol 30 (09) ◽  
pp. 2050129
Author(s):  
Jiao Jiang ◽  
Wenjing Zhang ◽  
Pei Yu

In this paper, we consider a predator–prey system with Holling type III ratio-dependent functional response. Such a system can exhibit complex dynamical behavior such as bistable and tristable phenomena which contain equilibria and oscillating motions for certain parameter values. In particular, we show that the ratio-dependent predator–prey system can exhibit multiple limit cycles due to Hopf bifurcation, giving rise to coexistence of stable equilibria and stable periodic solutions. These solutions may reveal some new type of patterns of complex dynamical behaviors in predator–prey systems.


2021 ◽  
Vol 91 (11) ◽  
pp. 1619
Author(s):  
А.П. Кузнецов ◽  
Ю.В. Седова ◽  
Н.В. Станкевич

A system of two dissipatively coupled generators, which can exhibit autonomous quasiperiodic oscillations, excited by a harmonic signal, is studied. Lyapunov charts are presented that reveal the regimes of invariant tori of different dimensions and chaos. Phase portraits in stroboscopic section and double Poincare section are presented. The coexistence of different regimes, in particular, the bifurcations of invariant tori, is discussed.


2011 ◽  
Vol 21 (02) ◽  
pp. 467-496 ◽  
Author(s):  
M. KATSANIKAS ◽  
P. A. PATSIS

We study in detail the structure of phase space in the neighborhood of stable periodic orbits in a rotating 3D potential of galactic type. Using the color and rotation method to investigate the properties of the invariant tori in 4D spaces of the section, we compare our results with those of previous works and we describe the morphology of the rotational, as well as of the tube tori in 4D space. We find sticky chaotic orbits in the immediate neighborhood of sets of invariant tori surrounding 3D stable periodic orbits. Particularly useful for galactic dynamics is the behavior of chaotic orbits trapped for long time between 4D invariant tori. We find that they support during this time the same structure as the quasi-periodic orbits around the stable periodic orbits, contributing however to a local increase of the dispersion of velocities. Finally, we find that the tube tori do not appear in the 3D projections of the spaces of the section in the axisymmetric Hamiltonian we examined.


Author(s):  
Morteza Zabihi ◽  
Serkan Kiranyaz ◽  
Ali Bahrami Rad ◽  
Aggelos K. Katsaggelos ◽  
Moncef Gabbouj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document