scholarly journals Shadowing for infinite dimensional dynamics and exponential trichotomies

Author(s):  
Lucas Backes ◽  
Davor Dragičević

Let $(A_m)_{m \in {\mathop Z}}$ be a sequence of bounded linear maps acting on an arbitrary Banach space X and admitting an exponential trichotomy and let $f_m:X \to X$ be a Lispchitz map for every $m\in {\mathop Z} $ . We prove that whenever the Lipschitz constants of $f_m$ , $m \in {\mathop Z} $ , are uniformly small, the nonautonomous dynamics given by $x_{m+1}=A_mx_m+f_m(x_m)$ , $m\in {\mathop Z} $ , has various types of shadowing. Moreover, if X is finite dimensional and each $A_m$ is invertible we prove that a converse result is also true. Furthermore, we get similar results for one-sided and continuous time dynamics. As applications of our results, we study the Hyers–Ulam stability for certain difference equations and we obtain a very general version of the Grobman–Hartman's theorem for nonautonomous dynamics.

2005 ◽  
Vol 02 (03) ◽  
pp. 251-258
Author(s):  
HANLIN HE ◽  
QIAN WANG ◽  
XIAOXIN LIAO

The dual formulation of the maximal-minimal problem for an objective function of the error response to a fixed input in the continuous-time systems is given by a result of Fenchel dual. This formulation probably changes the original problem in the infinite dimensional space into the maximal problem with some restrained conditions in the finite dimensional space, which can be researched by finite dimensional space theory. When the objective function is given by the norm of the error response, the maximum of the error response or minimum of the error response, the dual formulation for the problems of L1-optimal control, the minimum of maximal error response, and the minimal overshoot etc. can be obtained, which gives a method for studying these problems.


Author(s):  
S.A. Ayupov ◽  
F.N. Arzikulov

The present paper is devoted to 2-local derivations. In 1997, P. Semrl introduced the notion of 2-local derivations and described 2-local derivations on the algebra B(H) of all bounded linear operators on the infinite-dimensional separable Hilbert space H. After this, a number of paper were devoted to 2-local maps on different types of rings, algebras, Banach algebras and Banach spaces. A similar description for the finite-dimensional case appeared later in the paper of S. O. Kim and J. S. Kim. Y. Lin and T. Wong described 2-local derivations on matrix algebras over a finite-dimensional division ring. Sh. A. Ayupov and K. K. Kudaybergenov suggested a new technique and have generalized the above mentioned results for arbitrary Hilbert spaces. Namely they considered 2-local derivations on the algebra B(H) of all linear bounded operators on an arbitrary Hilbert space H and proved that every 2-local derivation on B(H) is a derivation. Then there appeared several papers dealing with 2-local derivations on associative algebras. In the present paper 2-lo\-cal derivations on various algebras of infinite dimensional matrix-valued functions on a compactum are described. We develop an algebraic approach to investigation of derivations and \mbox{2-local} derivations on algebras of infinite dimensional matrix-valued functions on a compactum and prove that every such 2-local derivation is a derivation. As the main result of the paper it is established that every \mbox{2-local} derivation on a ∗-algebra C(Q,Mn(F)) or C(Q,Nn(F)), where Q is a compactum, Mn(F) is the ∗-algebra of infinite dimensional matrices over complex numbers (real numbers or quaternoins) defined in section 1, Nn(F) is the ∗-subalgebra of Mn(F) defined in section 2, is a derivation. Also we explain that the method developed in the paper can be applied to Jordan and Lie algebras of infinite dimensional matrix-valued functions on a compactum.


2003 ◽  
Vol 44 (4) ◽  
pp. 485-500 ◽  
Author(s):  
P. G. Howlett ◽  
C. E. M. Pearce ◽  
A. P. Torokhti

AbstractLet u be a random signal with realisations in an infinite-dimensional vector space X and υ an associated observable random signal with realisations in a finite-dimensional subspace Y ⊆ X. We seek a pointwise-best estimate of u using a bounded linear filter on the observed data vector υ. When x is a finite-dimensional Euclidean space and the covariance matrix for υ is nonsingular, it is known that the best estimate û of u is given by a standard matrix expression prescribing a linear mean-square filter. For the infinite-dimensional Hilbert space problem we show that the matrix expression must be replaced by an analogous but more general expression using bounded linear operators. The extension procedure depends directly on the theory of the Bochner integral and on the construction of appropriate HilbertSchmidt operators. An extended example is given.


1990 ◽  
Vol 32 (1) ◽  
pp. 25-33 ◽  
Author(s):  
A. Dean ◽  
F. Zorzitto

By a representation of the extended Dynkin diagram we shall mean a list of 5 vector spaces P, E1, E2, E3, E4 over an algebraically closed field K, and 4 linear maps a1, a2, a3, a4 as shown.The spaces need not be of finite dimension.In their solution of the 4-subspace problem [6], Gelfand and Ponomarev have classified such representations when the spaces are finite dimensional. A representation like (1) can also be viewed as a module over the K-algebra R4 consisting of all 5 × 5 matrices having zeros off the first row and off the main diagonal.


1993 ◽  
Vol 114 (2) ◽  
pp. 303-319 ◽  
Author(s):  
John Fountain ◽  
Andrew Lewin

AbstractIn 1966, J. M. Howie characterized the self-maps of a set which can be written as a product (under composition) of idempotent self-maps of the same set. In 1967, J. A. Erdos considered the analogous question for linear maps of a finite dimensional vector space and in 1985, Reynolds and Sullivan solved the problem for linear maps of an infinite dimensional vector space. Using the concept of independence algebra, the authors gave a common generalization of the results of Howie and Erdos for the cases of finite sets and finite dimensional vector spaces. In the present paper we introduce strong independence algebras and provide a common generalization of the results of Howie and Reynolds and Sullivan for the cases of infinite sets and infinite dimensional vector spaces.


Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


2021 ◽  
pp. 108128652110194
Author(s):  
Fengjuan Meng ◽  
Cuncai Liu ◽  
Chang Zhang

This work is devoted to the following nonlocal extensible beam equation with time delay: [Formula: see text] on a bounded smooth domain [Formula: see text]. The main purpose of this paper is to consider the long-time dynamics of the system. Under suitable assumptions, the quasi-stability property of the system is established, based on which the existence and regularity of a finite-dimensional compact global attractor are obtained. Moreover, the existence of exponential attractors is proved.


Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 184-204
Author(s):  
Carlos Barrera-Causil ◽  
Juan Carlos Correa ◽  
Andrew Zamecnik ◽  
Francisco Torres-Avilés ◽  
Fernando Marmolejo-Ramos

Expert knowledge elicitation (EKE) aims at obtaining individual representations of experts’ beliefs and render them in the form of probability distributions or functions. In many cases the elicited distributions differ and the challenge in Bayesian inference is then to find ways to reconcile discrepant elicited prior distributions. This paper proposes the parallel analysis of clusters of prior distributions through a hierarchical method for clustering distributions and that can be readily extended to functional data. The proposed method consists of (i) transforming the infinite-dimensional problem into a finite-dimensional one, (ii) using the Hellinger distance to compute the distances between curves and thus (iii) obtaining a hierarchical clustering structure. In a simulation study the proposed method was compared to k-means and agglomerative nesting algorithms and the results showed that the proposed method outperformed those algorithms. Finally, the proposed method is illustrated through an EKE experiment and other functional data sets.


Sign in / Sign up

Export Citation Format

Share Document