Quantifying late Quaternary Australian rainfall seasonality changes using the Poaceae:Asteraceae pollen ratio

2020 ◽  
pp. 1-15
Author(s):  
Annika V. Herbert ◽  
Jennifer M. Fitchett

Abstract Mounting evidence suggests that the Southern Westerly Winds were significantly equatorially displaced and more intense during the last glacial maximum (LGM), prompting deliberate research identifying proxies to reconstruct these changes. This has focused on rainfall seasonality to track changes in major circulation patterns across the southern hemisphere midlatitude regions. Using a common methodology to reconstruct climatic changes aids comparability and makes it easier to draw significant conclusions regarding general circulation movements. We assess the applicability of Coetzee's (1967) Poaceae:Asteraceae pollen ratio, which has been used successfully in South Africa, in the Australian context. The ratio scores from modern samples fail to capture the weak seasonality in the southeast and on Tasmania but is successful for the rest of the continent. The periods of greatest change compared to present day match known periods of distinct climatic events, namely the mid-Holocene (6–7 cal ka BP), the last deglacial period (15–17 cal ka BP), and two periods during the LGM (20–22 and 31–33 cal ka BP), suggesting large parts of Australia experienced a “double peak” of rainfall seasonality change during the LGM. This confirms that the Poaceae:Asteraceae pollen ratio can be used on records outside of South Africa.

2018 ◽  
Vol 91 (2) ◽  
pp. 848-860 ◽  
Author(s):  
J. Tyler Faith ◽  
Brian M. Chase ◽  
D. Margaret Avery

AbstractThe southern Cape of South Africa is important to understanding regional climate because it straddles the transition between the winter and summer rainfall zones. We examine late Quaternary changes in rainfall seasonality and aridity through analysis of micromammal assemblages from three sites: Boomplaas Cave and Nelson Bay Cave in the aseasonal rainfall zone and Byneskranskop 1 in the winter rainfall zone. Our interpretation is based on analysis of 123 modern micromammal assemblages accumulated by barn owls (Tyto alba), which empirically links species composition to climate. The Pleistocene record (∼65 to 12 ka) from Boomplaas Cave, together with the last glacial maximum (LGM) samples from Nelson Bay Cave, indicates enhanced winter rainfall, especially during the LGM. Boomplaas Cave documents progressive aridification from the LGM to the earliest Holocene, followed by a return to moderately humid conditions through the Holocene. Byneskranskop 1 indicates a dominance of winter rains over the last 17 ka and a shift from an arid middle Holocene to a humid later Holocene. Agreement between the micromammal record and other local and regional proxies reinforces the potential of southern African micromammal assemblages as paleoclimate indicators.


2014 ◽  
Vol 27 (2) ◽  
pp. 807-823 ◽  
Author(s):  
Holly Dail ◽  
Carl Wunsch

Abstract Proxies indicate that the Last Glacial Maximum (LGM) Atlantic Ocean was marked by increased meridional and zonal near sea surface temperature gradients relative to today. Using a least squares fit of a full general circulation and sea ice model to upper-ocean proxy data with specified error estimates, a seasonally varying reconstruction is sought of the Atlantic Ocean state that is consistent with both the known dynamics and the data. With reasonable uncertainty assumptions for the observations and the adjustable (control) variables, a consistent LGM ocean state is found, one not radically different from the modern one. Inferred changes include a strengthening of the easterly and westerly winds, leading to strengthened subtropical and subpolar gyres, and increased upwelling favorable winds off the coast of Africa, leading to particularly cold SSTs in those regions.


1992 ◽  
Vol 37 (2) ◽  
pp. 203-213 ◽  
Author(s):  
A.S. Talma ◽  
John C. Vogel

AbstractAn oxygen isotope temperature record over a large part of the past 30,000 yr has been obtained for the southern Cape Province of South Africa by combining data on the isotopic composition of a stalagmite from a deep cave with that of a confined groundwater aquifer in the same region. Results show that temperatures during the last glacial maximum were on average about 6°C lower than those today, with peaks up to 7°C lower. A detailed analysis of the past 5000 yr suggests multiple fluctuations, with generally lower temperatures (1–2°C) around 4500 and 3000 yr B.P. The carbon isotopic composition of the stalagmite indicates significant vegetation changes between the late Pleistocene and today, and also during the second half of the Holocene.


2010 ◽  
Vol 73 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoping Yang ◽  
Louis A. Scuderi

Large areas in western China were wetlands or less arid between 40 and 30 ka, corresponding to the “Greatest Lake Period” on the adjacent Tibetan Plateau. During the last glacial maximum, some of these western Chinese deserts again experienced wetter conditions; however, at the same time the sandy lands in the eastern Chinese desert belt experienced an activation of aeolian dunes. While interpretations of the mid-Holocene environment in the deserts of China are controversial, it is quite likely that it was more humid not only in the eastern areas influenced by monsoon climate systems but also in the western deserts where moisture is currently associated with westerlies. Evaluation of lacustrine records in the lakes recharged by dryland rivers and the complex interactions of these systems, as well as other paleoenvironmental proxies such as the Artemisia/Chenopodiaceae ratio, should be interpreted with greater caution. Facing the highlighted uncertainties in our understanding of climate changes in Chinese deserts, it is hoped that this special issue will improve our knowledge considerably.


2007 ◽  
Vol 3 (2) ◽  
pp. 331-339 ◽  
Author(s):  
G. Ramstein ◽  
M. Kageyama ◽  
J. Guiot ◽  
H. Wu ◽  
C. Hély ◽  
...  

Abstract. The Last Glacial Maximum has been one of the first foci of the Paleoclimate Modelling Intercomparison Project (PMIP). During its first phase, the results of 17 atmosphere general circulation models were compared to paleoclimate reconstructions. One of the largest discrepancies in the simulations was the systematic underestimation, by at least 10°C, of the winter cooling over Europe and the Mediterranean region observed in the pollen-based reconstructions. In this paper, we investigate the progress achieved to reduce this inconsistency through a large modelling effort and improved temperature reconstructions. We show that increased model spatial resolution does not significantly increase the simulated LGM winter cooling. Further, neither the inclusion of a vegetation cover compatible with the LGM climate, nor the interactions with the oceans simulated by the atmosphere-ocean general circulation models run in the second phase of PMIP result in a better agreement between models and data. Accounting for changes in interannual variability in the interpretation of the pollen data does not result in a reduction of the reconstructed cooling. The largest recent improvement in the model-data comparison has instead arisen from a new climate reconstruction based on inverse vegetation modelling, which explicitly accounts for the CO2 decrease at LGM and which substantially reduces the LGM winter cooling reconstructed from pollen assemblages. As a result, the simulated and observed LGM winter cooling over Western Europe and the Mediterranean area are now in much better agreement.


1997 ◽  
Vol 25 ◽  
pp. 145-152 ◽  
Author(s):  
Gilles Ramstein ◽  
Adeline Fabre ◽  
Sophie Pinot ◽  
Catherine Ritz ◽  
Sylvie Joussaume

In the framework of the Paleoclimate Modelling Intercomparison Project (PMIP), simulations of the Last Glacial Maximum (LGM) have- been performed. More than 10 different atmospheric general circulation models (AGCMs) have been used with the same boundary conditions: sea-surface temperatures prescribed by CLIMAP (1981), ice-sheet reconstruction provided by Peltier (1994), change in insolation, and reduced CO2 content. One of the major questions is to investigate whether the simulations of the LGM are in equilibrium with the prescribed ice-sheet reconstruction. To answer this question, we have used two different approaches. First, we analyze the results of a sel of LGM simulations performed with different versions of the Laboratoire de Meteorolo-gie Dynamique (LMD) AGCM and study the hydrologic and snow- budgets over the Laurcntide and Fennoscandian ice sheets. Second, we use the AGCM outputs to force an ice-sheet model in order to investigate its ability to maintain the ice sheets as reconstructed by CLIMAP (1981) or Peltier (1994).


Author(s):  
Martin Claussen ◽  
Victor Brovkin ◽  
Andrey Ganopolski ◽  
Claudia Kubatzki ◽  
Vladimir Petoukhov

By coupling an atmospheric general circulation model asynchronously with an equilibrium vegetation model, manifold equilibrium solutions of the atmosphere–biosphere system have been explored. It is found that under present–day conditions of the Earth's orbital parameters and sea–surface temperatures, two stable equilibria of vegetation patterns are possible: one corresponding to present–day sparse vegetation in the Sahel, the second solution yielding savannah which extends far into the south–western part of the Sahara. A similar picture is obtained for conditions during the last glacial maximum (21 000 years before present (BP)). For the mid–Holocene (6000 years BP), however, the model finds only one solution: the green Sahara. We suggest that this intransitive behaviour of the atmosphere–biosphere is related to a westward shift of the Hadley–Walker circulation. A conceptual model of atmosphere–vegetation dynamics is used to interpret the bifurcation as well as its change in terms of stability theory.


Antiquity ◽  
1996 ◽  
Vol 70 (269) ◽  
pp. 623-638 ◽  
Author(s):  
Peter J. Mitchell

In the rough and rugged country of the Lesotho highlands, rock-paintings and archaeological deposits in the rock-shelters record hunter-gatherer life-ways; at Sehonghong, a long sequence runs from recent times to and through the Last Glacial Maximum. Survey of the region's Middle and Later Stone Age sites shows a pattern of concentrations that likely applies to other parts of the Lesotho highlands.


Sign in / Sign up

Export Citation Format

Share Document