scholarly journals Geomorphological evolution of the Petrovaradin Fortress Palaeolithic site (Novi Sad, Serbia)

2020 ◽  
pp. 1-14
Author(s):  
Slobodan B. Marković ◽  
Jef Vandenberghe ◽  
Thomas Stevens ◽  
Dušan Mihailović ◽  
Milivoj B. Gavrilov ◽  
...  

Abstract Two phases of archaeological investigation were performed in the Novi Sad City Museum at Petrovaradin Fortress. In this study, we summarize the results of geo-archaeological investigations of the second period of excavation inside the Novi Sad City Museum building. The fortress is situated on a Danube terrace with the top of the bedrock at ca.123 m asl. The investigated section consists of undisturbed fine-sandy silt. The grain-size distribution of the sediments indicates clearly its alluvial reworking but shows also a general similarity with typical primary loess in the region. All analyzed proxies indicate slightly stronger weathering in the upper part of the profile. Luminescence ages suggest that the investigated sequence covers the last glacial period and the terrace presumably formed during MIS 4. Subsequently, the Danube started its incision at the start of the next warmer period (MIS 3) onward. This terrace age and elevation enable us to derive an uplift rate of the terrace of ca. 0.73 mm/a for the last 60 ka, which seems to increase towards the present. Basal loessic material, in which artifacts occur, likely in the reworked position, indicate that the area close to today's Petrovaradin Fortress was already inhabited in MIS 5.

2010 ◽  
Vol 6 (1) ◽  
pp. 135-183 ◽  
Author(s):  
E. Capron ◽  
A. Landais ◽  
J. Chappellaz ◽  
A. Schilt ◽  
D. Buiron ◽  
...  

Abstract. Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka) and characterized by short Dansgaard-Oeschger (DO) events. Recent and new results obtained on the EPICA and NorthGRIP ice cores now precisely describe the rapid variations of Antarctic and Greenland temperature during MIS 5 (73.5–123 ka), a time period corresponding to relatively high sea level. The results display a succession of long DO events enabling us to highlight a sub-millennial scale climatic variability depicted by i) short-lived and abrupt warming events preceding some Greenland InterStadial (GIS) (precursor-type events) and ii) abrupt warming events at the end of some GIS (rebound-type events). The occurrence of these secondary events is suggested to be driven by the Northern Hemisphere summertime insolation at 65° N together with the internal forcing of ice sheets. Thanks to a recent NorthGRIP-EPICA Dronning Maud Land (EDML) common timescale over MIS 5, the bipolar sequence of climatic events can be established at millennial to sub-millennial timescale. This provides evidence that a linear relationship is not satisfactory in explaining the link between Antarctic warming amplitudes and the duration of their concurrent Greenland Stadial (GS) for the entire glacial period. The conceptual model for a thermal bipolar seesaw permits a reconstruction of the Antarctic response to the northern millennial and sub-millennial scale variability over MIS 5. However, we show that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict.


2010 ◽  
Vol 6 (3) ◽  
pp. 345-365 ◽  
Author(s):  
E. Capron ◽  
A. Landais ◽  
J. Chappellaz ◽  
A. Schilt ◽  
D. Buiron ◽  
...  

Abstract. Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka) and characterized by short Dansgaard-Oeschger (DO) events. Recent and new results obtained on the EPICA and NorthGRIP ice cores now precisely describe the rapid variations of Antarctic and Greenland temperature during MIS 5 (73.5–123 ka), a time period corresponding to relatively high sea level. The results display a succession of abrupt events associated with long Greenland InterStadial phases (GIS) enabling us to highlight a sub-millennial scale climatic variability depicted by (i) short-lived and abrupt warming events preceding some GIS (precursor-type events) and (ii) abrupt warming events at the end of some GIS (rebound-type events). The occurrence of these sub-millennial scale events is suggested to be driven by the insolation at high northern latitudes together with the internal forcing of ice sheets. Thanks to a recent NorthGRIP-EPICA Dronning Maud Land (EDML) common timescale over MIS 5, the bipolar sequence of climatic events can be established at millennial to sub-millennial timescale. This shows that for extraordinary long stadial durations the accompanying Antarctic warming amplitude cannot be described by a simple linear relationship between the two as expected from the bipolar seesaw concept. We also show that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period.


2020 ◽  
Vol 532 ◽  
pp. 116012 ◽  
Author(s):  
Jessica B. Volz ◽  
Bo Liu ◽  
Male Köster ◽  
Susann Henkel ◽  
Andrea Koschinsky ◽  
...  

2017 ◽  
Vol 13 (4) ◽  
pp. 345-358 ◽  
Author(s):  
Marília C. Campos ◽  
Cristiano M. Chiessi ◽  
Ines Voigt ◽  
Alberto R. Piola ◽  
Henning Kuhnert ◽  
...  

Abstract. Abrupt millennial-scale climate change events of the last deglaciation (i.e. Heinrich Stadial 1 and the Younger Dryas) were accompanied by marked increases in atmospheric CO2 (CO2atm) and decreases in its stable carbon isotopic ratios (δ13C), i.e. δ13CO2atm, presumably due to outgassing from the ocean. However, information on the preceding Heinrich Stadials during the last glacial period is scarce. Here we present δ13C records from two species of planktonic foraminifera from the western South Atlantic that reveal major decreases (up to 1 ‰) during Heinrich Stadials 3 and 2. These δ13C decreases are most likely related to millennial-scale periods of weakening of the Atlantic meridional overturning circulation and the consequent increase (decrease) in CO2atm (δ13CO2atm). We hypothesise two mechanisms that could account for the decreases observed in our records, namely strengthening of Southern Ocean deep-water ventilation and weakening of the biological pump. Additionally, we suggest that air–sea gas exchange could have contributed to the observed δ13C decreases. Together with other lines of evidence, our data are consistent with the hypothesis that the CO2 added to the atmosphere during abrupt millennial-scale climate change events of the last glacial period also originated in the ocean and reached the atmosphere by outgassing. The temporal evolution of δ13C during Heinrich Stadials 3 and 2 in our records is characterized by two relative minima separated by a relative maximum. This w structure is also found in North Atlantic and South American records, further suggesting that such a structure is a pervasive feature of Heinrich Stadial 2 and, possibly, also Heinrich Stadial 3.


2013 ◽  
Vol 160 (5) ◽  
pp. 1285-1296 ◽  
Author(s):  
D. W. Foltz ◽  
S. D. Fatland ◽  
M. Eléaume ◽  
K. Markello ◽  
K. L. Howell ◽  
...  

2013 ◽  
Vol 59 (218) ◽  
pp. 1117-1128 ◽  
Author(s):  

AbstractThe IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore >100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use manual and algorithmic matching to synthesize our South Pole measurements with ice-core and logging data from Dome C, East Antarctica. We derive impurity concentration, precision chronology, annual-layer thickness, local spatial variability, and identify several widespread volcanic ash depositions useful for dating. We also examine the interval around ∼74 ka recently isolated with radiometric dating to bracket the Toba (Sumatra) supereruption.


2021 ◽  
Author(s):  
Mohamed M. Ezat ◽  
Tine L. Rasmussen ◽  
Mathis P. Hain ◽  
Mervyn Greaves ◽  
James W B Rae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document