scholarly journals Turnover of the Soil Organic Matter Amino Acid Fraction Investigated by 13C and 14C Signatures of Carboxyl Carbon

Radiocarbon ◽  
2016 ◽  
Vol 59 (2) ◽  
pp. 473-481 ◽  
Author(s):  
Christine Hatté ◽  
Claude Noury ◽  
Louay Kheirbeik ◽  
Jérôme Balesdent

AbstractNitrogenous compounds of soil organic matter constitute a major N reservoir on Earth. Both the world food protein supply produced by agriculture and the global contamination by reactive nitrogen species rely on the dynamics of these compounds. To investigate their dynamics, we used both natural 13C labeling and accelerator mass spectrometry (AMS) 14C dating of the α-carboxyl amino carbon, which is specific of the amino acid fraction that was extracted from bulk soil organic matter by ninhydrin hydrolysis. We applied this isotopic approach to investigate the age of carboxyl carbon in a maize-cultivated Cambisol chronosequence. Based on a few measurements, we demonstrate the feasibility of this new compound-specific method of investigation of soil carbon dynamics. We show that soil organic matter amino acids can be split into two very distinct dynamic compartments: the majority having a mean age of a few years and a minority having a mean carbon age of several millennia. The latter fraction can be either strongly stabilized in soils, or can arise from microbial utilization of old carbon resources, as predicted by the priming effect theory.




2017 ◽  
Vol 38 (4) ◽  
pp. 1799
Author(s):  
Denilson Dortzbach ◽  
Shirlei Almeida Assunção ◽  
Marcos Gervasio Pereira ◽  
Eduardo Carvalho da Silva Neto

The implementation of agricultural systems such as viticulture can quantitatively and qualitatively affect the contents of soil organic matter (SOM). These changes may modify the edaphic features of the soil as well as the soil quality. The objective of this study was to evaluate the chemical and physical fraction of SOMand to analyze changes in the carbon stock and C management index in areas of implanted vineyards in altitude regions of Santa Catarina. Four regions were selected: Region I (Urubici); Region II (San Joaquim); Region III (Campos Novos) and Region IV (Água Doce). In each region, we selected vineyards implanted between 2001 and 2005 as well as surrounding forested areas. Disturbed and undisturbed samples were collected from the 0-5, 5-10, and 10-20 cm layers of the soil. Samples were prepared in the laboratory to obtain air-dried soft soil, which was then used for the analysis of several parameters, namely total organic carbon (TOC), carbon stock,and chemical fractionation of the soil. The chemical fractionation was then used to determine carbon content in the fulvic acid fraction (C-FAF), humic acid fraction (C-HAF), and humin fraction (C-HUM). We also analyzed particle size, quantified the levels of particulate carbon (COp) and carbon associated with clay and silt (COam), and calculated the carbon management index (CMI). We evaluated normality and homogeneity for all data. The results were evaluated with an analysis of variance and subsequent F-test. Mean values were compared using a 5% Student’s t-test and subsequently submitted to a Tukey’s test. The highest TOC levels were observed in Region II in the 0-5 cm layer in both vineyard and forested areas. Vineyard areas exhibited lower values of TOC, Cop, and COam compared to forested areas indicating that the management adopted in these areas contributed to the reduction of these fractions. Forested areas exhibited a higher proportion of Cop compared to vineyard areas. The humin fraction represented the largest portion of the TOC and comprised the highest values in both forested and vineyard areas. The carbon management index indicated a low contribution of vineyard areas or a reduction in carbon storage in their soils.



2021 ◽  
Author(s):  
Shun Hasegawa ◽  
Torgny Näsholm ◽  
Mark Bonner

<p>There is a growing body of evidence that plants uptake a monumental amount of organic forms of nitrogen (N) like amino acids in addition to those in inorganic forms. An amino acid-based fertiliser has been shown to improve seedling development and commercialised. Boreal forests store a substantial amount of carbon (C) in the soil and this is widely known to be further enhanced by the addition of inorganic nitrogen fertiliser via hampered decomposition. However, very little is known about how amino acid-based fertiliser influences C/N cycling in the boreal soils. The organic forms of N supply not only nitrogen but also carbon. If the previously demonstrated suppression of SOM decomposition is owing to altered C:N ratios in substrates, the amino acid-based fertiliser may not have as pronounced effects on the soil as the inorganic fertiliser. </p><p> We have examined the impacts of the organic fertiliser (100 kg N and 130 kg C ha<sup>-1</sup> year<sup>-1</sup>)—arginine—on the chemical composition of soil organic matter in a boreal forest in comparison to non-fertilised, inorganic fertilised (ammonium-nitrate) and C-controlled inorganic fertilised (sucrose + ammonium-nitrate) conditions. The soil organic matter was characterised using two metrics: pyrolysis GC/MS and 13C solid-state nuclear magnetic resonance (NMR), combined with enzymological and metagenomic analysis.</p><p>We will be presenting the results following 4-year of the fertiliser treatments. Preliminary results have shown that there is limited evidence that the fertiliser treatments alter soil C/N cycing in four years. Nevertheless, the chemical composition in SOM under the organic fertiliser condition was similar to that under C-controlled compared to inorganic fertiliser treatment. </p>





1970 ◽  
Vol 50 (2) ◽  
pp. 233-241 ◽  
Author(s):  
F. J. SOWDEN

The amino acids set free by proteolytic enzymes were determined with an amino acid analyzer. Soil and enzyme blanks were subtracted. Pronase released 2 to 10% of the aspartic acid + asparagine, threonine, serine, glutamic acid + glutamine, glycine, lysine and histidine in some fractions of soil organic matter along with 15–35% of the alanine, valine, isoleucine, leucine, tyrosine, phenylalanine and arginine. There was no release of proline, ornithine or ammonia. When the pronase hydrolysate was treated with leucine amino-peptidase, 15% of the proline was released, the yield of glycine was raised from 2 to 14% and the amount of the acidic amino acids was also higher. Acid hydrolysis of the pronase hydrolysate also released more amino acid material but the blanks were much higher than with leucine aminopeptidase. The results suggested that more than half of the aspartic and glutamic acids found on acid hydrolysis were present in the soil organic matter fractions as asparagine and glutamine. The action of pronase on the organic matter of the intact soil was slight, even in the presence of a complexing agent. Papain released very little amino acid material from organic matter fractions, but leucine aminopeptidase or HCl hydrolysis of the papain hydrolysate released about 10% of the amino acid of the fraction, indicating that significant amounts of peptides were formed on papain treatment.





1998 ◽  
Vol 26 (3) ◽  
pp. 235-242 ◽  
Author(s):  
Z. N. Senwo ◽  
M. A. Tabatabai


2009 ◽  
Vol 33 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Tony Jarbas Ferreira Cunha ◽  
Beata Emoke Madari ◽  
Luciano Pasqualoto Canellas ◽  
Lucedino Paixão Ribeiro ◽  
Vinicius de Melo Benites ◽  
...  

Fertility properties, total C (Ctot), and chemical soil organic matter fractions (fulvic acid fraction - FA, humic acid fraction - HA, humin fraction - H) of anthropogenic dark earths (Terra Preta de Índio) of the Amazon basin were compared with those of Ferralsols with no anthropogenic A horizon. Terra Preta soils had a higher fertility (pH: 5.1-5.4; Sum of bases, SB: 8.93-10.33 cmol c kg-1 , CEC: 17.2-17.5 cmol c kg-1 , V: 51-59 %, P: 116-291 mg kg-1) and Ctot (44.6-44.7 g kg-1) than adjacent Ferralsols (pH: 4.4; SB: 2.04 cmol c kg-1, CEC: 9.5 cmol c kg-1, V: 21 %, P 5 mg kg-1, C: 37.9 g kg-1). The C distribution among humic substance fractions (FA, HA, H) in Terra Preta soils was also different, as shown by the ratios HA:FA and EA/H (EA=HA+FA) (2.1-3.0 and 1.06-1.08 for Terra Preta and 1.2 and 0.72 for Ferralsols, respectively). While the cation exchange capacity (CEC), of Ferralsols correlated with FA (r = 0.97), the CEC of Terra Preta correlated with H (r = 0.82). The correlation of the fertility of Terra Preta with the highly stable soil organic matter fraction (H) is highly significant for the development of sustainable soil fertility management models in tropical ecosystems.



Sign in / Sign up

Export Citation Format

Share Document