scholarly journals RADIOCARBON, TRACE ELEMENTS AND PB ISOTOPE COMPOSITION OF PINE NEEDLES FROM A HIGHLY INDUSTRIALIZED REGION IN SOUTHERN POLAND

Radiocarbon ◽  
2021 ◽  
pp. 1-14
Author(s):  
Barbara Sensuła ◽  
Nathalie Fagel ◽  
Adam Michczyński

ABSTRACT We determined the chemical composition of pine needles to monitor environmental contamination in an urban forest environment in the most industrialized part of southern Poland. The concentrations of radiocarbon (14C), trace elements (Cr, Co, Ni, Cu, Zn, Rb, Sr, Ba, Ce, Pb) and the Pb isotope composition were measured in needles from Pinus sylvestris L. growing in nine urban forests near five factories. The investigated young pine needles were collected in January 2013 and September 2013, respectively. 14C concentration was determined by liquid scintillation counter, trace elemental concentration and Pb isotope ratio were determined by ICP-MS and MC-ICP-MS, respectively. Analysis of trace metal pollution is based on the assumption that element concentrations in tree foliage represent element availability in the environment. Different space-time patterns of element accumulation in pine needles were observed. The variation in isotopic composition reflects a mix between different anthropogenic sources.

2021 ◽  
Author(s):  
Barbara Sensuła ◽  
Nathalie Fagel

<p>Trees can provide annual records of ecosystem changes connected with human activity over several decades. These changes can be recorded in the pattern of variation of tree-rings widths and in the variation in the elemental composition of wood. Analysis of trace metal pollution is based on the assumption that element concentrations in tree foliage and tree rings represent element availability in the environment.</p><p>We determined the chemical composition of pine needles and annual tree rings to monitor environmental contamination in an urban forest environment in the most industrialized part of southern Poland.</p><p>The concentrations of trace elements (Cr, Co, Ni, Cu, Zn, Pb) and the Pb isotope composition were measured in needles from Pinus sylvestris L. growing in nine urban forests near five factories. Trace elemental concentration and Pb isotope ratio were determined by ICP-MS and MC-ICP-MS, respectively. The needles were characterized based on the concentrations of Cr, ranging from 0.05 to 0.7 mg/kg, Co, from 0.005 to 0.075 mg/kg, Ni, from 0.12 to 0.66 mg/kg, Cu, from 0.49 to 1.0 mg/kg, Zn, from 3.9 to 14 mg/kg, and Pb, from 0.06 to 0.53 mg/kg. The <sup>208</sup>Pb/<sup>206</sup>Pb ratio ranged from 2.08 to 2.11 and the <sup>206</sup>Pb/<sup>207</sup>Pb ratio between 1.15 and 1.17. The heterogeneity of Pb isotope ratio indicates that there are different sources affecting the Pb isotopic composition of pine needles (Sensuła et al., 2021).</p><p>In one of the investigated site, a radial trace-element profiles were determined by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (Laser ablation: New Wave Research UP-193 FX Fast Excimer, ICP-MS: Thermo Scientific X-Series2 with CCT -Collision Cell Technology) at Royal Museum for Central Africa (Belgium). LA-ICP-MS provides a repeatable, minimally destructive, sensitive method for determining many elements in wood tissue, with relatively high spatial resolution.Temporal variations of element concentration (median) in annual tree-rings of pines were compared with time series of wet deposition of pollutant and air pollutant concentration in the investigated area. The similar trends of magnitudes changes can be observed between analysed elements concentration (Na, Mg, Fe, Ni, Zn) and total wet deposition of these elements in the environment during vegetation period or these elements concentration in the rain (Sensuła et al. 2017). </p><p>Different space-time patterns of element accumulation in pine needles and annaul tree rings were observed. The variation in isotopic composition reflects a mix between different anthropogenic sources.</p><p> </p><p>References:</p><p>Sensuła, B., Wilczyński, S., Monin, L., Allan, M., Pazdur, A., & Fagel, N. (2017). Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories, Geochronometria, 44(1), 226-239. doi: https://doi.org/10.1515/geochr-2015-0064</p><p>Sensuła, B., Fagel, N., & Michczyński, A. (2021). Radiocarbon, trace elements and pb isotope composition of pine needles from a highly industrialized region in southern Poland. Radiocarbon, 1-14. doi:10.1017/RDC.2020.132</p>


2021 ◽  
Vol 43 (1) ◽  
pp. 34-50
Author(s):  
L.M. STEPANYUK ◽  
L.V. SHUMLYANSKYY ◽  
S.I. KURYLO ◽  
V.O. SYOMKA ◽  
S.M. BONDARENKO ◽  
...  

LA-ICP-MS method was applied to investigate U-Pb and Lu-Hf isotope systematics of zircon crystals from charnockitic gneiss and biotite-garnet-hypersthene enderbite that occur in the lower reaches of the Yatran river (Yatran block of the Bouh river area). According to the obtained isotope data, charnockitic gneiss hosts three zircon populations. The oldest one is represented by three crystals that have isotope age between 3125 and 3300 Ma, and εHf values between –2.3 and –7.5. The next population is well-defined, it has an age of 2038±25 Ma and large variations of Hf isotope composition: 176Hf/177Hf — from 0.28122 to 0.28261, εHf — from –9.3 до 4.6. However, the ages of most of the analyzed zircons spread along the concordia between 2300 and 2800 Ma. All zircons in this population have a similar Hf isotope composition 176Hf/177Hf = 0.28072 to 0.28092, which does not depend on the age. It is characteristic that the oldest (with preserved U-Pb isotope systematics) crystals have positive or slightly negative εHf values. Most of the U-Pb isotope analyses of zircons from enderbite fall on the discordia line that has an upper interception age of 2029 ± 18 Ma. A small number of discordant grains have 207Pb/206Pb ages up to 2500 Ma. Hafnium isotope composition in zircons from enderbite varies widely: 176Hf/177Hf = 0.28131 to 0.28151, and εHf from –6.2 to 1.8.


2013 ◽  
Vol 63 (2) ◽  
pp. 271-281 ◽  
Author(s):  
Magdalena Kokowska-Pawłowska ◽  
Jacek Nowak

Abstract Kokowska-Pawłowska, M. and Nowak, J. 2013. Phosphorus minerals in tonstein; coal seam 405 at Sośnica- Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica, 63 (2), 271-281. Warszawa. The paper presents results of research on tonstein, which constitutes an interburden in coal seam 405 at the Sośnica- Makoszowy coal mine, Makoszowy field (mining level 600 m), Upper Silesia, southern Poland. The mineral and chemical compositions of the tonstein differ from the typical compositions described earlier for tonsteins from Upper Silesia Coal Basin area. Additionally, minerals present in the tonsteins include kaolinite, quartz, kaolinitised biotite and feldspars. The presence of the phosphatic minerals apatite and goyazite has been recognized. The presence of gorceixite and crandallite is also possible. The contents of CaO (5.66 wt%) and P2O5 (6.2 wt%) are remarkably high. Analysis of selected trace elements demonstrated high contents of Sr (4937 ppm) and Ba (4300 ppm), related to the phosphatic minerals. On the basis of mineral composition the tonstein has been identified as a crystalline tonstein, transitional to a multiplied one.


Author(s):  
Perrine Hoet ◽  
Chantal Jacquerye ◽  
Gladys Deumer ◽  
Dominique Lison ◽  
Vincent Haufroid

AbstractObjectivesTrace elements (TEs) from natural and anthropogenic sources are ubiquitous. Essential or not, their relevance for human health and disease is constantly expanding. Biological monitoring is a widely integrated tool in risk assessment both in occupational and environmental settings. However, the determination of appropriate and accurate reference values in the (specific) population is a prerequisite for a correct interpretation of biomonitoring data. This study aimed at determining the reference distribution for TEs (Al, As, Sb, Be, Bi, Cd, Co, Cu, Mn, Hg, Mo, Ni, Pb, Se, Tl, Sn, V, Zn) in the blood and/or plasma of the adult population in Belgium.MethodsBlood and plasma samples were analyzed for 178 males and 202 females, recruited according to an a priori selection procedure, by inductively coupled plasma mass spectrometry (ICP-MS).ResultsReference values were established with high confidence for AsT, Cd, Cu, HgT, Mn, Mo, Pb, Sn, Se, Tl and Zn. Compared to previously published data in the Belgian population, a decreasing time trend is observed for Zn, Cd and Pb. Globally, the results also indicate that the current exposure levels to TEs in the Belgian population are similar to those from other recent national surveys.ConclusionsThese reference values and limits obtained through validated analytical and statistical methods will be useful for future occupational and/or environmental surveys. They will contribute to decision-making concerning both public health policies but also exposure assessments on an individual scale.


Author(s):  
Aneta Olszewska ◽  
Anetta Hanć

Abstract Purpose Tooth enamel might provide past chronological metabolic, nutritional status and trace metal exposure during development. Thus, the trace elements distribution embedded in tooth tissues represents an archive of the environmental conditions. The choice of biomarker is estimated as critical to the measurement of metal exposure. Natal teeth are defined as teeth being present at birth. Methods LA-ICP-MS provides a quantitative assessment of spatial distribution of trace elements in a natal tooth. The objective of the current study was to compare concentrations of building and other elements in a rare but reliable and valid biomarker - natal tooth. Results It have been reported presence of potentially toxic elements: Pb, Cu, Mn, Cd, Ni distributed in prenatally and perinatally formed enamel and dentine. Conclusions Analyses of deciduous enamel can provide answers into individuals’ earliest development, including critical pre- and perinatal period.


Sign in / Sign up

Export Citation Format

Share Document