scholarly journals An inequality from genetics

1986 ◽  
Vol 18 (03) ◽  
pp. 860-861
Author(s):  
E. Seneta

A class of fitness matrices whose parameters may be varied to give differing stability structure is shown by Chebyshev&s covariance inequality to possess a variance lower bound for the change in mean fitness.

1986 ◽  
Vol 18 (3) ◽  
pp. 860-861 ◽  
Author(s):  
E. Seneta

A class of fitness matrices whose parameters may be varied to give differing stability structure is shown by Chebyshev&s covariance inequality to possess a variance lower bound for the change in mean fitness.


Genetics ◽  
1977 ◽  
Vol 85 (2) ◽  
pp. 347-354
Author(s):  
Thomas Nagylaki

ABSTRACT Weak selection in a monoecious population is studied in two multiallelic panmictic models. In the first, a single locus is considered with continuous time and age-independent fertilities and mortalities. If the fertilities of the various matings and the genotypic mortalities may be expressed with an error at most of the second order in s (i.e., O(s  2)), where s is the intensity of selection, as sums of terms corresponding to the different genotypes and alleles, respectively, then after several generations the deviations from Hardy-Weinberg proportions are of O(s  2). In the second model, two loci are treated with discrete nonoverlapping generations. It is shown that if the epistatic parameters are of O(s2), then after several generations the linkage disequilibria are reduced to O(s  2). Assuming only weak selection, it is proved that in both models, after several generations, the total change in mean fitness is generally positive. It is likely that the exclusion of the initial period is usually unnecessary in natural populations. Exceptions are discussed.


Genetics ◽  
1976 ◽  
Vol 83 (3) ◽  
pp. 583-600
Author(s):  
Thomas Nagylaki

ABSTRACT Assuming age-independent fertilities and mortalities and random mating, continuous-time models for a monoecious population are investigated for weak selection. A single locus with multiple alleles and two alleles at each of two loci are considered. A slow-selection analysis of diallelic and multiallelic two-locus models with discrete nonoverlapping generations is also presented. The selective differences may be functions of genotypic frequencies, but their rate of change due to their explicit dependence on time (if any) must be at most of the second order in s, (i.e., O(s  2)), where s is the intensity of natural selection. Then, after several generations have elapsed, in the continuous time models the time-derivative of the deviations from Hardy-Weinberg proportions is of O(s  2), and in the two-locus models the rate of change of the linkage disequilibrium is of O(s  2). It follows that, if the rate of change of the genotypic fitnesses is smaller than second order in s (i.e., o(s  2)), then to O(s  2) the rate of change of the mean fitness of the population is equal to the genic variance. For a fixed value of s, however, no matter how small, the genic variance may occasionally be smaller in absolute value than the (possibly negative) lower order terms in the change in fitness, and hence the mean fitness may decrease. This happens if the allelic frequencies are changing extremely slowly, and hence occurs often very close to equilibrium. Some new expressions are derived for the change in mean fitness. It is shown that, with an error of O(s), the genotypic frequencies evolve as if the population were in Hardy-Weinberg proportions and linkage equilibrium. Thus, at least for the deterministic behavior of one and two loci, deviations from random combination appear to have very little evolutionary significance.


Genetics ◽  
1981 ◽  
Vol 99 (2) ◽  
pp. 365-369
Author(s):  
John R G Turner

ABSTRACT The change in mean fitness for two loci under selection can be described by four terms: (i) the variance of fitness, (ii) a weighted between-gamete covariance, (iii) a function of recombination, linkage disequilibrium and the slope of the surface of mean fitness on disequilibrium, and (iv) a function of these two parameters and the curvature of the surface. Independent derivations of this equation by different methods, although thought at one time to be in disagreement, give algebraically identical results.


2021 ◽  
Author(s):  
Maria Moiron ◽  
Anne Charmantier ◽  
Sandra Bouwhuis

Additive genetic variance in fitness equals the change in mean fitness due to selection. It is a prerequisite for adaptation, as a trait must be genetically correlated with fitness in order to evolve. Despite its relevance, additive genetic variance in fitness has not often been estimated in wild populations. Here, we investigate additive genetic variance in lifetime fitness, as well as its underlying components, in common terns (Sterna hirundo). Using a series of animal models applied to 28 years of data comprising ca. 6000 pedigreed individuals, we find nominally zero additive genetic variance in the Zero-inflated component of lifetime fitness, and low but unreliable variance in the Poisson component. We also find low but likely nonzero additive genetic variance in adult annual reproductive success, but not in survival. As such, our study (i) suggests heritable variance in common tern fitness to result mostly from heritable variance in reproductive success, rather than in early-life or adult survival, (ii) shows how studying the genetic architecture of fitness in natural populations remains challenging, and (iii) highlights the importance of maintaining long-term individual-based studies such that a major research aim in evolutionary ecology will come within better reach in the next decade.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Clifford Zeyl ◽  
J Arjan G M DeVisser

Abstract The per-genome, per-generation rate of spontaneous mutation affecting fitness (U) and the mean fitness cost per mutation (s) are important parameters in evolutionary genetics, but have been estimated for few species. We estimated U and sh (the heterozygous effect of mutations) for two diploid yeast strains differing only in the DNA mismatch-repair deficiency used to elevate the mutation rate in one (mutator) strain. Mutations were allowed to accumulate in 50 replicate lines of each strain, during 36 transfers of randomly chosen single colonies (∼600 generations). Among wild-type lines, fitnesses were bimodal, with one mode showing no change in mean fitness. The other mode showed a mean 29.6% fitness decline and the petite phenotype, usually caused by partial deletion of the mitochondrial genome. Excluding petites, maximum-likelihood estimates adjusted for the effect of selection were U = 9.5 × 10-5 and sh = 0.217 for the wild type. Among the mutator lines, the best fit was obtained with 0.005 ≤ U ≤ 0.94 and 0.049 ≥ sh ≥ 0.0003. Like other recently tested model organisms, wild-type yeast have low mutation rates, with high mean fitness costs per mutation. Inactivation of mismatch repair increases the frequency of slightly deleterious mutations by approximately two orders of magnitude.


2019 ◽  
Vol 485 (2) ◽  
pp. 142-144
Author(s):  
A. A. Zevin

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


Sign in / Sign up

Export Citation Format

Share Document