Constrained optimal terrain following/threat avoidance trajectory planning using network flow

2014 ◽  
Vol 118 (1203) ◽  
pp. 523-539 ◽  
Author(s):  
R. Zardashti ◽  
A. A. Nikkhah ◽  
M. J. Yazdanpanah

AbstractThis paper focuses on the trajectory planning for a UAV on a low altitude terrain following/threat avoidance (TF/TA) mission. Using a grid-based approximated discretisation scheme, the continuous constrained optimisation problem into a search problem is transformed over a finite network. A variant of the Minimum Cost Network Flow (MCNF) to this problem is then applied. Based on using the Digital Terrain Elevation Data (DTED) and discrete dynamic equations of motion, the four-dimensional (4D) trajectory (three spatial and one time dimensions) from a starting point to an end point is obtained by minimising a cost function subject to dynamic and mission constraints of the UAV. For each arc in the grid, a cost function is considered as the combination of the arc length, fuel consumption and flight time. The proposed algorithm which considers dynamic and altitude constraints of the UAV explicitly is then used to obtain the feasible trajectory. The resultant trajectory can increase the survivability of the UAV using the threat region avoidance and the terrain masking effect. After obtaining the feasible trajectory, an improved algorithm is proposed to smooth the trajectory. The numeric results are presented to verify the capability of the proposed approach to generate admissible trajectory in minimum possible time in comparison to the previous works.

2009 ◽  
Vol 113 (1143) ◽  
pp. 301-308 ◽  
Author(s):  
R. Zardashti ◽  
M. Bagherian

Abstract This paper focuses on the three dimensional flight path planning for a UAV on a low altitude terrain following/terrain avoidance mission. Using an approximate grid-based discretisation scheme, we transform the continuous optimisation problem into a search problem over a finite network, and apply a variant of the shortest-path algorithm to this problem. In other words using the three dimensional terrain information, three dimensional flight path from a starting point to an end point, minimising a cost function and regarding the kinematics constraints of the UAV is calculated. A network flow model is constructed based on the digital terrain elevation data (DTED) and a layered network is obtained. The cost function for each arc is defined as the length of the arc, then a constrained shortest path algorithm which considers the kinematics and the altitude constraints of the UAV is used to obtain the best route. Moreover the important performance parameters of the UAV are discussed. Finally a new algorithm is proposed to smooth the path in order to reduce the workload of the autopilot and control system of the UAV. The numeric results are presented to verify the capability of the procedure to generate admissible route in minimum possible time in comparison to the previous procedures. So this algorithm is potentially suited for using in online systems.


2020 ◽  
Vol 124 (1282) ◽  
pp. 1849-1864
Author(s):  
R. Zardashti ◽  
S. Rahimi

ABSTRACTA trajectory optimisation procedure is addressed to generate a reference trajectory for Satellite Launch Vehicles (SLVs). Using a grid-based discrete scheme, a Modified Minimum Cost Network Flow (MCNF)-based algorithm over a large-scale network is proposed. By using the network grid around the Earth and the discrete dynamic equations of motion, the optimum trajectory from a launch point to the desired orbit is obtained exactly by minimisation of a cost functional subject to the nonlinear dynamics and mission constraints of the SLV. Several objectives such as the flight time and terminal conditions may be assigned to each arc in the network. Simulation results demonstrate the capability of the proposed algorithm to generate an admissible trajectory in the minimum possible time compared with previous works.


Author(s):  
Praneet Dutta ◽  
Rashmi Ranjan Das ◽  
Rupali Mathur ◽  
Deepika Rani Sona

This paper deals with the trajectory and path generation of the industrial manipulator. The trajectory is obtained using the equations of motion and also the optimal path planning (OPP) approach under kinodynamic constraints. The optimal control problem is defined for the minimum cost function and to obtain the necessary conditions. Here we have used pontrygain’s minimum principle to obtain the limiting value of joint angle and also  the joint velocity and torque. In this paper we have used the “Two degree of freedom (DOF) manipulator” for analysis and designing the optimal control for multi link and multi degree of freedom manipulator. For analysis purposes,  simulation software has been used to formulate the trajectory and minimize the cost function involved.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1716
Author(s):  
Adrian Marius Deaconu ◽  
Delia Spridon

Algorithms for network flow problems, such as maximum flow, minimum cost flow, and multi-commodity flow problems, are continuously developed and improved, and so, random network generators become indispensable to simulate the functionality and to test the correctness and the execution speed of these algorithms. For this purpose, in this paper, the well-known Erdős–Rényi model is adapted to generate random flow (transportation) networks. The developed algorithm is fast and based on the natural property of the flow that can be decomposed into directed elementary s-t paths and cycles. So, the proposed algorithm can be used to quickly build a vast number of networks as well as large-scale networks especially designed for s-t flows.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Yi Liao ◽  
Xiao-Dong Ma

Abstract We investigate systematically dimension-9 operators in the standard model effective field theory which contains only standard model fields and respects its gauge symmetry. With the help of the Hilbert series approach to classifying operators according to their lepton and baryon numbers and their field contents, we construct the basis of operators explicitly. We remove redundant operators by employing various kinematic and algebraic relations including integration by parts, equations of motion, Schouten identities, Dirac matrix and Fierz identities, and Bianchi identities. We confirm counting of independent operators by analyzing their flavor symmetry relations. All operators violate lepton or baryon number or both, and are thus non-Hermitian. Including Hermitian conjugated operators there are $$ {\left.384\right|}_{\Delta B=0}^{\Delta L=\pm 2}+{\left.10\right|}_{\Delta B=\pm 2}^{\Delta L=0}+{\left.4\right|}_{\Delta B=\pm 1}^{\Delta L=\pm 3}+{\left.236\right|}_{\Delta B=\pm 1}^{\Delta L=\mp 1} $$ 384 Δ B = 0 Δ L = ± 2 + 10 Δ B = ± 2 Δ L = 0 + 4 Δ B = ± 1 Δ L = ± 3 + 236 Δ B = ± 1 Δ L = ∓ 1 operators without referring to fermion generations, and $$ {\left.44874\right|}_{\Delta B=0}^{\Delta L=\pm 2}+{\left.2862\right|}_{\Delta B=\pm 2}^{\Delta L=0}+{\left.486\right|}_{\Delta B=\pm 1}^{\Delta L=\pm 3}+{\left.42234\right|}_{\Delta B=\mp 1}^{\Delta L=\pm 1} $$ 44874 Δ B = 0 Δ L = ± 2 + 2862 Δ B = ± 2 Δ L = 0 + 486 Δ B = ± 1 Δ L = ± 3 + 42234 Δ B = ∓ 1 Δ L = ± 1 operators when three generations of fermions are referred to, where ∆L, ∆B denote the net lepton and baryon numbers of the operators. Our result provides a starting point for consistent phenomenological studies associated with dimension-9 operators.


1992 ◽  
Vol 58 (4) ◽  
pp. 1114 ◽  
Author(s):  
Scott E. Atkinson ◽  
Robert Halvorsen
Keyword(s):  

2004 ◽  
Vol 23 (4) ◽  
pp. 703-715 ◽  
Author(s):  
T. Chettibi ◽  
H.E. Lehtihet ◽  
M. Haddad ◽  
S. Hanchi

1979 ◽  
Vol 6 (1) ◽  
pp. 120-128
Author(s):  
Craig J. Miller ◽  
Juarez Accioly

Precast, prestressed segmental box-girder bridges are now accepted as an economical alternative for spans over 150 ft (46 m). Decisions about cross-sectional dimensions made during preliminary design can have a substantial influence on the final cost of the bridge. To help the designer obtain an economical starting point for a final design, a program was written to determine section dimensions and midspan and pier prestressing steel areas to give minimum cost. Since a preliminary design is obtained, the analysis techniques and design criteria have been simplified to reduce computation. The design produced by the program will satisfy AASHTO specification requirements and the recommendations of the PCI Bridge Committee. The optimization algorithm used is the generalized reduced gradient technique. To demonstrate the program capabilities, three example problems are discussed. The results indicate that optimum span-depth ratios are approximately 24 for the cost ratios used. The cost of the optimum design does not seem to be too sensitive to the ratio of concrete cost to prestressing steel cost.


Sign in / Sign up

Export Citation Format

Share Document