Supersonic wing-body wave drag co-ordinated optimisation based on FCE methodology

2014 ◽  
Vol 118 (1209) ◽  
pp. 1359-1372
Author(s):  
X. Guan

Abstract Wave drag reduction is important for the aerodynamic performance optimisation of supersonic cruise aircrafts, such as the supersonic civil transport and the supersonic cruise missile. In this paper a method of the supersonic wing-body wave drag optimisation, the wave drag co-optimisation based on far-field composite elements (CoFCE), is proposed based on class-shape-transformation (CST) parameterisation. Wave drag optimisation cases of a supersonic civil transport wing-body are presented, including the optimisation results and computation cost analyses. It is suggested that the supersonic wing-body wave drag can be significantly reduced by the proposed method with relatively small numbers of design parameter. In the optimisation case presented in this paper a 45% wave drag reduction is achieved. The wave drag optimised configuration also achieved significant lift to drag ratio improvements in small angles-of-attack supersonic cruise flight conditions.

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 460-467 ◽  
Author(s):  
David Riggins ◽  
H. F. Nelson ◽  
Eric Johnson

2013 ◽  
Vol 477-478 ◽  
pp. 240-245
Author(s):  
Xiaohui Guan

Bi-directional Flying Wing (BFW) is a new supersonic civil transport shape concept that aims to meet the conflict requirements of high speed cruise and low speed take-off/landing missions. In this paper the Class-Shape-Transformation (CST) shape parameterization method is modified to represent the BFW shape, and new basis functions suitable for the BFW airfoil representation are constructed. The Far-field Composite Element (FCE) wave drag optimization is performed on both the flat bottom and symmetric BFW configurations, and the drag reduction effects and result precision are surveyed. It is suggested that significant wave drag reduction can be achieved by the FCE optimization for both the flat bottom and the symmetric BFW configurations. The wave drag coefficients with sufficient precision can be obtained in the FCE optimization of the symmetric configuration; while the FCE optimization results of the flat bottom one are not accurate enough.


AIAA Journal ◽  
10.2514/2.756 ◽  
1999 ◽  
Vol 37 (4) ◽  
pp. 460-467 ◽  
Author(s):  
David Riggins ◽  
H. F. Nelson ◽  
Eric Johnson

2014 ◽  
Vol 1 (1) ◽  
pp. 215-220
Author(s):  
A Saeed ◽  
Malik. S. Raza ◽  
Ahmed Mohsin Khalil

AbstractAir travelling is the second largest travelling medium used by people. In future it is expected to be the first choice for the travellers. As increase in the price of oil cost of air travelling is getting higher. Engineers are forced to find the cheaper means of travelling by innovating new techniques. This paper presents the new idea to reduce air travelling cost by reducing drag, which is major driving factor of high fuel consumption. Two-dimensional and three-dimensional shock control contour bumps have been designed and analysed for a supercritical wing section with the aim of transonic wave drag reduction. A supercritical airfoil (NACA SC (02)-0714) has been selected for this study considering the fact that most modern jet transport aircraft that operate in the transonic flow regime (cruise at transonic speeds) employ supercritical airfoil sections. It is to be noted that a decrease in the transonic wave drag without loss in lift would result in an increased lift to drag ratio, which being a key range parameter could potentially increase both the range and endurance of the aircraft. The major geometric bump parameters such as length, height, crest and span have been altered for both the two-dimensional and three-dimensional bumps in order to obtain the optimum location and shape of the bump. Once an optimum standalone three-dimensional bump has been acquired an array of bumps has been manually placed spanwise of an unswept supercritical wing and analysed under fully turbulent flow conditions. Different configurations have been tested with varying three-dimensional bump spacing in order to determine the contribution of bump spacing on overall performance. The results show a 14 percent drag reduction and a consequent 16 percent lift to drag ratio rise at the design Mach number for the optimum arrangement of bumps along the wing span. This innovative technique proves to be a bridge between economical problems and engineering solutions and a milestone for aviation engineering.


2001 ◽  
Author(s):  
Yair Guy ◽  
Thomas McLaughlin ◽  
Julie Morrow

2019 ◽  
Vol 17 (2) ◽  
pp. 91
Author(s):  
Fuji Dwiastuty

Missile is one of Indonesia 7 self – reliant main weapon system programs. Therefore research on the anti – surface ship missile system concept had been carried out at the Faculty of Defense Technology, Defense University. This research aims to abtain optimal design of anti – ship missile concept from previous research, i.e. 2 stages cruise missile with diameter of 0.36 m, total length of 5.19 m, cruise flight altitude of 17 m, and cruise flight speed of 0.88 Mach. The optimation is done on the missile’s aerodynamics characteristics to maximize its lift to drag ratio, which is one of the factor that determine the missile’s performance. Variables of nose cone shapes, number of wings, and body cross sections were chosen for evaluation of lift to drag ratio. The research found that nose cone shape did not affect the aerodynamic characteristics since the flight speed is subsonic. From the rest of the variables, it is found that the best configuration is missile with 2 wings with root length of 1.18 m, height of 0.79 m, and tip length of 0.71 m, elliptical body cross section,  and the missile is to be flown at 6o angle of attack.


2018 ◽  
Author(s):  
Vishnu Prakash K ◽  
Siddesh Desai ◽  
Hrishikesh Gadgil ◽  
Vinayak Kulkarni

Author(s):  
Dathi SNV Rajasekhar Rao ◽  
Bibin John

In this study, unsteady wave drag reduction in hypersonic flowfield using pulsed energy addition is numerically investigated. A single energy pulse is considered to analyze the time-averaged drag reduction/pulse. The blast wave creation, translation and its interaction with shock layer are studied. As the wave drag depends only on the inviscid aspects of the flowfield, Euler part of a well-established compressible flow Navier-Stokes solver USHAS (Unstructured Solver for Hypersonic Aerothermodynamics) is employed for the present study. To explore the feasibility of pulsed energy addition in reducing the wave drag at different flight conditions, flight Mach numbers of 5.75, 6.9 and 8.0 are chosen for the study. An [Formula: see text] apex angle blunt cone model is considered to be placed in such hypersonic streams, and steady-state drag and unsteady drag reductions are computed. The simulation results indicate that drag of the blunt-body can be reduced below the steady-state drag for a significant period of energy bubble-shock layer interaction, and the corresponding propulsive energy savings can be up to 9%. For energy pulse of magnitude 100mJ deposited to a spherical region of 2 mm radius, located 50 mm upstream of the blunt-body offered a maximum percentage of wave drag reduction in the case of Mach 8.0 flowfield. Two different flow features are found to be responsible for the drag reduction, one is the low-density core of the blast wave and the second one is the baroclinic vortex created due to the plasma energy bubble-shock layer interaction. For the same freestream stagnation conditions, these two flow features are noted to be very predominant in the case of high Mach number flow in comparison to Mach 5.75 and 6.9 cases. However, the ratio of energy saved to the energy consumed is noted as a maximum for the lower Mach number case.


Shock Waves ◽  
2009 ◽  
pp. 1309-1313 ◽  
Author(s):  
M. Rein ◽  
H. Rosemann ◽  
E. Schülein

Sign in / Sign up

Export Citation Format

Share Document