The Behaviour of a Clamped Circular Plate in Compression

1961 ◽  
Vol 12 (1) ◽  
pp. 51-64 ◽  
Author(s):  
A. N. Sherbourne

SummaryA theoretical solution is presented for the problem of the clamped circular plate loaded in uniform compression. The solution employs a numerical method programmed for a digital computer. Instead of solving the classical von Kármán large deflection equations, a step-by-step integration of the elastic differential equations of equilibrium is carried out until suitable boundary conditions are attained. The method is an extension of one developed earlier to explain the behaviour of the simply-supported plate.

1982 ◽  
Vol 104 (2) ◽  
pp. 227-233
Author(s):  
Patrick Bourgin ◽  
Bernard Gay

The bidimensional flow equations of a Stokesian fluid are solved for the case of steady, incompressible, and laminar flow between two arbitrary moving surfaces separated by a small gap. The stress T22 and the shearing stress at one of the walls are coupled through nonlinear integro-differential equations, depending on the viscous function only. The form of this differential system is specified for the equations derived from the theory of phenomenological macrorheology, as developed by Reiner and Rivlin. The solution is proved to be unique under certain conditions and for adequate boundary conditions. An example is worked out in the particular case of one single non-Newtonian parameter. The problem is solved in two different ways, using an approximate analytic method and a numerical method. The conception of the latter allows to generalize it by introducing only slight modifications into the program.


1969 ◽  
Vol 4 (2) ◽  
pp. 75-80 ◽  
Author(s):  
K R Rushton

The von Kármán equations for the large deflection of plates are solved by the dynamic-relaxation method. Detailed results are presented for square plates having simply supported edges with zero in-plane boundary stresses. The results show that high stresses occur towards the corners of the plates. The mesh effect is investigated and recommendations are made for the optimum mesh spacing.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Necdet Bildik ◽  
Mustafa Inc

We present a comparison between Adomian decomposition method (ADM) and Tau method (TM) for the integro-differential equations with the initial or the boundary conditions. The problem is solved quickly, easily, and elegantly by ADM. The numerical results on the examples are shown to validate the proposed ADM as an effective numerical method to solve the integro-differential equations. The numerical results show that ADM method is very effective and convenient for solving differential equations than Tao method.


1969 ◽  
Vol 73 (703) ◽  
pp. 607-608 ◽  
Author(s):  
A. C. Mills

In ref. (1) Pope presents a theoretical analysis of the buckling of rectangular plates tapered in thickness under uniform load in the direction of taper. An experimental investigation into the end load buckling problem for a plate having simply-supported edges with the sides prevented from moving normally in the plane of the plate is described in ref. (2). For these boundary conditions the theoretical solution is exact. However, the compatability equation is not satisfied exactly when the sides are free to move in the plane of the plate. This experimental investigation demonstrates that the buckling load is nevertheless adequately predicted by the analysis in these circumstances.


1958 ◽  
Vol 25 (2) ◽  
pp. 267-273
Author(s):  
N. Yamaki

Abstract This paper deals with the elastic stability of a circular annular plate under uniform compressive forces applied at its edges. By integrating the equilibrium equation of the buckled plate, the problem is solved in its most general form for twelve different combinations of the boundary conditions of the edges. For each case cited the lowest critical loads are calculated with the ratio of its radii as the parameter. It is clarified that the assumption of symmetrical buckling, which has been made by several researchers, often leads to the overestimate for the stability of the plate. Discussions for the limiting cases of the circular plate and infinite strip also are included.


1968 ◽  
Vol 90 (2) ◽  
pp. 279-293
Author(s):  
J. C. Heap

The basic equations of deflection, slope, and moments for a thin, flat, circular plate subjected to a uniform load on a concentric circle were derived for four generalized cases. From these generalized cases, six simplified cases were deduced. The four generalized cases have the uniform load acting on a concentric circle of the plate between the inner and outer edges, with the following boundary conditions: (a) Outer edge supported and fixed, inner edge fixed; (b) outer edge simply supported, inner edge free; (c) outer edge simply supported, inner edge fixed; and (d) outer edge supported and fixed, inner edge free.


2010 ◽  
Vol 10 (01) ◽  
pp. 77-89 ◽  
Author(s):  
LAZARO GIMENA ◽  
PEDRO GONZAGA ◽  
FAUSTINO GIMENA

This paper deals with curved beams with polynomial free geometry. The problem is approached analytically and the differential equations that govern the mechanical behavior of curved beams are presented. A system of twelve linear ordinary differential equations is solved using either an analytical or a customized numerical method with boundary conditions. Results of the different components of forces, moments, rotations, and displacements are given and plotted in the examples for different polynomial-shaped beams of the fourth degree. It is concluded from the present analyses that the parabolic shape has better response to distributed loads than the other polynomial-shaped beams considered.


Sign in / Sign up

Export Citation Format

Share Document