scholarly journals Worst-case errors in a Sobolev space setting for cubature over the sphere S2

2005 ◽  
Vol 71 (1) ◽  
pp. 81-105 ◽  
Author(s):  
Kerstin Hesse ◽  
Ian H. Sloan

This paper studies the problem of numerical integration over the unit sphere S2 ⊆ ℝ3 for functions in the Sobolev space H3/2(S2). We consider sequences Qm(n), n ∈ ℕ, of cubature (or numerical integration) rules, where Qm(n) is assumed to integrate exactly all (spherical) polynomials of degree ≤ n, and to use m = m(n) values of f. The cubature weights of all rules Qm(n) are assumed to be positive, or alternatively the sequence Qm(n), n ∈ ℕ, is assumed to have a certain local regularity property which involves the weights and the points of the rules Qm(n), n ∈ ℕ. Under these conditions it is shown that the worst-case (cubature) error, denoted by E3/2 (Qm(n)), for all functions in the unit ball of the Hilbert space H3/2 (S2) satisfies the estimate E3/2 (Qm(n)) ≤ c n−3/2, where the constant c is a universal constant for all sequences of positive weight cubature rules. For a sequence Qm(n), n ∈ ℕ, of cubature rules that satisfies the alternative local regularity property the constant c may depend on the sequence Qm(n), n ∈ ℕ. Examples of cubature rules that satisfy the assumptions are discussed.

2007 ◽  
Vol 7 (3) ◽  
pp. 239-254 ◽  
Author(s):  
I.H. Sloan

Abstract Finite-order weights have been introduced in recent years to describe the often occurring situation that multivariate integrands can be approximated by a sum of functions each depending only on a small subset of the variables. The aim of this paper is to demonstrate the danger of relying on this structure when designing lattice integration rules, if the true integrand has components lying outside the assumed finiteorder function space. It does this by proving, for weights of order two, the existence of 3-dimensional lattice integration rules for which the worst case error is of order O(N¯½), where N is the number of points, yet for which there exists a smooth 3- dimensional integrand for which the integration rule does not converge.


2018 ◽  
Vol 16 (05) ◽  
pp. 693-715 ◽  
Author(s):  
Erich Novak ◽  
Mario Ullrich ◽  
Henryk Woźniakowski ◽  
Shun Zhang

The standard Sobolev space [Formula: see text], with arbitrary positive integers [Formula: see text] and [Formula: see text] for which [Formula: see text], has the reproducing kernel [Formula: see text] for all [Formula: see text], where [Formula: see text] are components of [Formula: see text]-variate [Formula: see text], and [Formula: see text] with non-negative integers [Formula: see text]. We obtain a more explicit form for the reproducing kernel [Formula: see text] and find a closed form for the kernel [Formula: see text]. Knowing the form of [Formula: see text], we present applications on the best embedding constants between the Sobolev space [Formula: see text] and [Formula: see text], and on strong polynomial tractability of integration with an arbitrary probability density. We prove that the best embedding constants are exponentially small in [Formula: see text], whereas worst case integration errors of algorithms using [Formula: see text] function values are also exponentially small in [Formula: see text] and decay at least like [Formula: see text]. This yields strong polynomial tractability in the worst case setting for the absolute error criterion.


2014 ◽  
Vol 95 (109) ◽  
pp. 29-47 ◽  
Author(s):  
Abdullo Hayotov ◽  
Gradimir Milovanovic ◽  
Kholmat Shadimetov

We construct an optimal quadrature formula in the sense of Sard in the Hilbert space K2(P3). Using Sobolev?s method we obtain new optimal quadrature formula of such type and give explicit expressions for the corresponding optimal coefficients. Furthermore, we investigate order of the convergence of the optimal formula and prove an asymptotic optimality of such a formula in the Sobolev space L (3)2 (0, 1). The obtained optimal quadrature formula is exact for the trigonometric functions sin x, cos x and for constants. Also, we include a few numerical examples in order to illustrate the application of the obtained optimal quadrature formula.


2016 ◽  
Vol 23 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Armen Sergeev

AbstractIn this paper, we give an interpretation of some classical objects of function theory in terms of Banach algebras of linear operators in a Hilbert space. We are especially interested in quasisymmetric homeomorphisms of the circle. They are boundary values of quasiconformal homeomorphisms of the disk and form a group ${\operatorname{QS}(S^{1})}$ with respect to composition. This group acts on the Sobolev space ${H^{1/2}_{0}(S^{1},\mathbb{R})}$ of half-differentiable functions on the circle by reparameterization. We give an interpretation of the group ${\operatorname{QS}(S^{1})}$ and the space ${H^{1/2}_{0}(S^{1},\mathbb{R})}$ in terms of noncommutative geometry.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881990
Author(s):  
Chigbogu Godwin Ozoegwu

The vibration of the engineering systems with distributed delay is governed by delay integro-differential equations. Two-stage numerical integration approach was recently proposed for stability identification of such oscillators. This work improves the approach by handling the distributed delay—that is, the first-stage numerical integration—with tensor-based higher order numerical integration rules. The second-stage numerical integration of the arising methods remains the trapezoidal rule as in the original method. It is shown that local discretization error is of order [Formula: see text] irrespective of the order of the numerical integration rule used to handle the distributed delay. But [Formula: see text] is less weighted when higher order numerical integration rules are used to handle the distributed delay, suggesting higher accuracy. Results from theoretical error analyses, various numerical rate of convergence analyses, and stability computations were combined to conclude that—from application point of view—it is not necessary to increase the first-stage numerical integration rule beyond the first order (trapezoidal rule) though the best results are expected at the second order (Simpson’s 1/3 rule).


2008 ◽  
Vol 28 (1) ◽  
pp. 291-317 ◽  
Author(s):  
MASATO TSUJII

AbstractWe consider suspension semi-flows of angle-multiplying maps on the circle for Cr ceiling functions with r≥3. Under a Crgeneric condition on the ceiling function, we show that there exists a Hilbert space (anisotropic Sobolev space) contained in the L2 space such that the Perron–Frobenius operator for the time-t-map acts naturally on it and that the essential spectral radius of that action is bounded by the square root of the inverse of the minimum expansion rate. This leads to a precise description of decay of correlations. Furthermore, the Perron–Frobenius operator for the time-t-map is quasi-compact for a Cr open and dense set of ceiling functions.


2014 ◽  
Vol 20 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Simeon Reich ◽  
Alexander J. Zaslavski

Abstract.H. H. Bauschke and J. M. Borwein showed that in the space of all tuples of bounded, closed, and convex subsets of a Hilbert space with a nonempty intersection, a typical tuple has the bounded linear regularity property. This property is important because it leads to the convergence of infinite products of the corresponding nearest point projections to a point in the intersection. In the present paper we show that the subset of all tuples possessing the bounded linear regularity property has a porous complement. Moreover, our result is established in all normed spaces and for tuples of closed and convex sets, which are not necessarily bounded.


Author(s):  
David Krieg ◽  
Mario Ullrich

AbstractWe study the $$L_2$$ L 2 -approximation of functions from a Hilbert space and compare the sampling numbers with the approximation numbers. The sampling number $$e_n$$ e n is the minimal worst-case error that can be achieved with n function values, whereas the approximation number $$a_n$$ a n is the minimal worst-case error that can be achieved with n pieces of arbitrary linear information (like derivatives or Fourier coefficients). We show that $$\begin{aligned} e_n \,\lesssim \, \sqrt{\frac{1}{k_n} \sum _{j\ge k_n} a_j^2}, \end{aligned}$$ e n ≲ 1 k n ∑ j ≥ k n a j 2 , where $$k_n \asymp n/\log (n)$$ k n ≍ n / log ( n ) . This proves that the sampling numbers decay with the same polynomial rate as the approximation numbers and therefore that function values are basically as powerful as arbitrary linear information if the approximation numbers are square-summable. Our result applies, in particular, to Sobolev spaces $$H^s_\mathrm{mix}(\mathbb {T}^d)$$ H mix s ( T d ) with dominating mixed smoothness $$s>1/2$$ s > 1 / 2 and dimension $$d\in \mathbb {N}$$ d ∈ N , and we obtain $$\begin{aligned} e_n \,\lesssim \, n^{-s} \log ^{sd}(n). \end{aligned}$$ e n ≲ n - s log sd ( n ) . For $$d>2s+1$$ d > 2 s + 1 , this improves upon all previous bounds and disproves the prevalent conjecture that Smolyak’s (sparse grid) algorithm is optimal.


Sign in / Sign up

Export Citation Format

Share Document