scholarly journals 1-perfect codes in Sierpiński graphs

2002 ◽  
Vol 66 (3) ◽  
pp. 369-384 ◽  
Author(s):  
Sandi Klavžar ◽  
Uroš Milutinović ◽  
Ciril Petr

Sierpiński graphs S (n, κ) generalise the Tower of Hanoi graphs—the graph S (n, 3) is isomorphic to the graph Hn of the Tower of Hanoi with n disks. A 1-perfect code (or an efficient dominating set) in a graph G is a vertex subset of G with the property that the closed neighbourhoods of its elements form a partition of V (G). It is proved that the graphs S (n, κ) possess unique 1-perfect codes, thus extending a previously known result for Hn. An efficient decoding algorithm is also presented. The present approach, in particular the proposed (de)coding, is intrinsically different from the approach to Hn.

Author(s):  
Mohsen Alambardar Meybodi

A set [Formula: see text] of a graph [Formula: see text] is called an efficient dominating set of [Formula: see text] if every vertex [Formula: see text] has exactly one neighbor in [Formula: see text], in other words, the vertex set [Formula: see text] is partitioned to some circles with radius one such that the vertices in [Formula: see text] are the centers of partitions. A generalization of this concept, introduced by Chellali et al. [k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122], is called [Formula: see text]-efficient dominating set that briefly partitions the vertices of graph with different radiuses. It leads to a partition set [Formula: see text] such that each [Formula: see text] consists a center vertex [Formula: see text] and all the vertices in distance [Formula: see text], where [Formula: see text]. In other words, there exist the dominators with various dominating powers. The problem of finding minimum set [Formula: see text] is called the minimum [Formula: see text]-efficient domination problem. Given a positive integer [Formula: see text] and a graph [Formula: see text], the [Formula: see text]-efficient Domination Decision problem is to decide whether [Formula: see text] has a [Formula: see text]-efficient dominating set of cardinality at most [Formula: see text]. The [Formula: see text]-efficient Domination Decision problem is known to be NP-complete even for bipartite graphs [M. Chellali, T. W. Haynes and S. Hedetniemi, k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122]. Clearly, every graph has a [Formula: see text]-efficient dominating set but it is not correct for efficient dominating set. In this paper, we study the following: [Formula: see text]-efficient domination problem set is NP-complete even in chordal graphs. A polynomial-time algorithm for [Formula: see text]-efficient domination in trees. [Formula: see text]-efficient domination on sparse graphs from the parametrized complexity perspective. In particular, we show that it is [Formula: see text]-hard on d-degenerate graphs while the original dominating set has Fixed Parameter Tractable (FPT) algorithm on d-degenerate graphs. [Formula: see text]-efficient domination on nowhere-dense graphs is FPT.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 15
Author(s):  
Lucky Galvez ◽  
Jon-Lark Kim

Practically good error-correcting codes should have good parameters and efficient decoding algorithms. Some algebraically defined good codes, such as cyclic codes, Reed–Solomon codes, and Reed–Muller codes, have nice decoding algorithms. However, many optimal linear codes do not have an efficient decoding algorithm except for the general syndrome decoding which requires a lot of memory. Therefore, a natural question to ask is which optimal linear codes have an efficient decoding. We show that two binary optimal [ 36 , 19 , 8 ] linear codes and two binary optimal [ 40 , 22 , 8 ] codes have an efficient decoding algorithm. There was no known efficient decoding algorithm for the binary optimal [ 36 , 19 , 8 ] and [ 40 , 22 , 8 ] codes. We project them onto the much shorter length linear [ 9 , 5 , 4 ] and [ 10 , 6 , 4 ] codes over G F ( 4 ) , respectively. This decoding algorithm, called projection decoding, can correct errors of weight up to 3. These [ 36 , 19 , 8 ] and [ 40 , 22 , 8 ] codes respectively have more codewords than any optimal self-dual [ 36 , 18 , 8 ] and [ 40 , 20 , 8 ] codes for given length and minimum weight, implying that these codes are more practical.


2013 ◽  
Vol 7 (1) ◽  
pp. 72-82 ◽  
Author(s):  
Sandi Klavzar ◽  
Sara Zemljic

Sierpi?ski graphs Sn p form an extensively studied family of graphs of fractal nature applicable in topology, mathematics of the Tower of Hanoi, computer science, and elsewhere. An almost-extreme vertex of Sn p is introduced as a vertex that is either adjacent to an extreme vertex of Sn p or is incident to an edge between two subgraphs of Sn p isomorphic to Snp-1. Explicit formulas are given for the distance in Sn p between an arbitrary vertex and an almostextreme vertex. The formulas are applied to compute the total distance of almost-extreme vertices and to obtain the metric dimension of Sierpi?ski graphs.


Sign in / Sign up

Export Citation Format

Share Document