scholarly journals Relationship between abnormal sperm morphology induced by dietary zinc deficiency and lipid composition in testes of growing rats

2009 ◽  
Vol 102 (2) ◽  
pp. 226-232 ◽  
Author(s):  
Krystal J. Merrells ◽  
Heather Blewett ◽  
Jennifer A. Jamieson ◽  
Carla G. Taylor ◽  
Miyoung Suh

The present study investigated the effect of dietary Zn deficiency during sexual maturation on sperm integrity and testis phospholipid fatty acid composition. Male weanling Sprague–Dawley rats were randomised into four dietary groups for 3 weeks: Zn control (ZC; 30 mg Zn/kg); Zn marginally deficient (ZMD; 9 mg Zn/kg); Zn deficient (ZD; < 1 mg Zn/kg); pair fed (PF; 30 mg Zn/kg) to the ZD group. Morphology of cauda epididymal sperm and lipid profiles of testis phospholipids were analysed. The rats fed the ZD diet had a lower testis weight (P < 0·02). Seminal vesicles and prostate weight were also lower in the ZD and PF groups. Rats fed the ZD diet, but not the ZMD diet, had 34–35 % more abnormal spermatozoa and 24 % shorter sperm tail length than the ZC and PF rats (P < 0·001). Testis cholesterol concentration was higher in the ZD rats compared with the ZC and PF rats (P < 0·04). Testes were highly enriched with n-6 fatty acids by showing n-6 : n-3 fatty acid ratios of 27:1 in phosphatidylcholine (PC) and 23:1 in phosphatidylethanolamine (PE). The dominant fatty acid in testes was docosapentaenoic acid (22 : 5n-6), comprising 15 and 24 % of PC and PE, respectively. This fatty acid was significantly lower in the ZD rats, whereas 18 : 2n-6 was higher compared with the rats in the other diet groups. These results demonstrate that severe Zn deficiency adversely affects sperm integrity and modulates testis fatty acid composition by interrupting essential fatty acid metabolism. This suggests that Zn deficiency-associated abnormal testicular function is perhaps preceded by altered membrane fatty acid composition, especially of a major fatty acid, 22 : 5n-6.

2011 ◽  
Vol 106 (4) ◽  
pp. 491-501 ◽  
Author(s):  
Manar Aoun ◽  
Francoise Michel ◽  
Gilles Fouret ◽  
Audrey Schlernitzauer ◽  
Vincent Ollendorff ◽  
...  

Accumulation of muscle TAG content and modification of muscle phospholipid fatty acid pattern may have an impact on lipid metabolism, increasing the risk of developing diabetes. Some polyphenols have been reported to modulate lipid metabolism, in particular those issued from red grapes. The present study was designed to determine whether a grape polyphenol extract (PPE) modulates skeletal muscle TAG content and phospholipid fatty acid composition in high-fat–high-sucrose (HFHS) diet-fed rats. Muscle plasmalemmal and mitochondrial fatty acid transporters, GLUT4 and lipid metabolism pathways were also explored. The PPE decreased muscle TAG content in HFHS/PPE diet-fed rats compared with HFHS diet-fed rats and induced higher proportions of n-3 PUFA in phospholipids. The PPE significantly up-regulated GLUT4 mRNA expression. Gene and protein expression of muscle fatty acid transporter cluster of differentiation 36 (CD36) was increased in HFHS diet-fed rats but returned to control values in HFHS/PPE diet-fed rats. Carnitine palmitoyltransferase 1 protein expression was decreased with the PPE. Mitochondrial β-hydroxyacyl CoA dehydrogenase was increased in HFHS diet-fed rats and returned to control values with PPE supplementation. Lipogenesis, mitochondrial biogenesis and mitochondrial activity were not affected by the PPE. In conclusion, the PPE modulated membrane phospholipid fatty acid composition and decreased muscle TAG content in HFHS diet-fed rats. The PPE lowered CD36 gene and protein expression, probably decreasing fatty acid transport and lipid accumulation within skeletal muscle, and increased muscle GLUT4 expression. These effects of the PPE are in favour of a better insulin sensibility.


2000 ◽  
Vol 53 (5) ◽  
pp. 1025-1039 ◽  
Author(s):  
P.F. Surai ◽  
J-P. Brillard ◽  
B.K. Speake ◽  
E. Blesbois ◽  
F. Seigneurin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document