scholarly journals Freeze-dried jaboticaba peel powder improves insulin sensitivity in high-fat-fed mice

2013 ◽  
Vol 110 (3) ◽  
pp. 447-455 ◽  
Author(s):  
Nathalia R. V. Dragano ◽  
Anne y Castro Marques ◽  
Dennys E. C. Cintra ◽  
Carina Solon ◽  
Joseane Morari ◽  
...  

The peel of the native Brazilian fruit jaboticaba is rich in anthocyanins, which are known for their anti-obesity effects in animal models. The aim of the present study was to evaluate the effects of freeze-dried jaboticaba peel powder (FDJPP) on a number of metabolic parameters in a model of diet-induced obesity. Mice (n 8 per group) were initially fed on a high-fat diet (HFD, 35 % w/w) for 4 weeks and then switched to a HFD supplemented with FDJPP (1, 2 or 4 % w/w) for an additional 6 weeks. Energy intake, weight loss, glucose tolerance, insulin resistance and lipid profile were determined, and the results were evaluated using ANOVA and Tukey's tests. The FDJPP exerted no protective effect on HFD-induced weight gain, hyperleptinaemia and glucose intolerance. However, the supplementation was effective to reduce insulin resistance, as evidenced in the insulin tolerance test, and subsequently confirmed by improved signal transduction through the insulin receptor/insulin receptor substrate-1/Akt/forkhead box protein pathway and by the attenuation of HFD-induced inflammation in the liver, verified by lower expressions of IL-1β and IL-6 and decreased phosphorylated IκB-α protein levels in all jaboticaba-treated mice. These results suggest that FDJPP may exert a protective role against obesity-associated insulin resistance.

Author(s):  
Xiaobing Cui ◽  
Jia Fei ◽  
Sisi Chen ◽  
Gaylen L. Edwards ◽  
Shi-You Chen

Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases, and many other chronic diseases. The objective of this study was to determine the role of adenosine deaminase acting on RNA 1 (ADAR1) in the development of obesity and insulin resistance. Wild-type (WT) and heterozygous ADAR1-deficient (Adar1+/-) mice were fed normal chow or high-fat diet (HFD) for 12 weeks. Adar1+/- mice fed with HFD exhibited a lean phenotype with reduced fat mass compared with WT controls, although no difference was found under chow diet conditions. Blood biochemical analysis and insulin tolerance test showed that Adar1+/- improved HFD-induced dyslipidemia and insulin resistance. Metabolic studies showed that food intake was decreased in Adar1+/- mice compared with the WT mice under HFD conditions. Paired feeding studies further demonstrated that Adar1+/- protected mice from HFD-induced obesity through decreased food intake. Furthermore, Adar1+/- restored the increased ghrelin expression in stomach and the decreased serum peptide YY levels under HFD conditions. These data indicate that ADAR1 may contribute to diet-induce obesity, at least partially, through modulating the ghrelin and peptide YY expression and secretion.


2011 ◽  
Vol 301 (5) ◽  
pp. E901-E911 ◽  
Author(s):  
Wentong Pan ◽  
Ester Ciociola ◽  
Manish Saraf ◽  
Batbayar Tumurbaatar ◽  
Demidmaa Tuvdendorj ◽  
...  

Ectonucleotide pyrophosphate phosphodiesterase (ENPP1) has been shown to negatively modulate insulin receptor and to induce cellular insulin resistance when overexpressed in various cell types. Systemic insulin resistance has also been observed when ENPP1 is overexpressed in multiple tissues of transgenic models and attributed largely to tissue insulin resistance induced in skeletal muscle and liver. Another key tissue in regulating glucose and lipid metabolism is adipose tissue (AT). Interestingly, obese patients with insulin resistance have been reported to have increased AT ENPP1 expression. However, the specific effects of ENPP1 in AT have not been studied. To better understand the specific role of AT ENPP1 on systemic metabolism, we have created a transgenic mouse model (C57/Bl6 background) with targeted overexpression of human ENPP1 in adipocytes, using aP2 promoter in the transgene construct ( AdiposeENPP1-TG). Using either regular chow or pair-feeding protocol with 60% fat diet, we compared body fat content and distribution and insulin signaling in adipose, muscle, and liver tissues of AdiposeENPP1-TG and wild-type (WT) siblings. We also compared response to intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT). Our results show no changes in Adipose ENPP1-TG mice fed a regular chow diet. After high-fat diet with pair-feeding protocol, AdiposeENPP1-TG and WT mice had similar weights. However, AdiposeENPP1-TG mice developed fatty liver in association with changes in AT characterized by smaller adipocyte size and decreased phosphorylation of insulin receptor Tyr1361 and Akt Ser473. These changes in AT function and fat distribution were associated with systemic abnormalities of lipid and glucose metabolism, including increased plasma concentrations of fatty acid, triglyceride, plasma glucose, and insulin during IPGTT and decreased glucose suppression during ITT. Thus, our results show that, in the presence of a high-fat diet, ENPP1 overexpression in adipocytes induces fatty liver, hyperlipidemia, and dysglycemia, thus recapitulating key manifestations of the metabolic syndrome.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Guohua Song ◽  
Chuanlong Zong ◽  
Mingzhu Shao ◽  
Yang Yu ◽  
Shoudong Guo ◽  
...  

Increased phospholipid transfer protein (PLTP) activity has been found to be associated with diabetes, obesity, and metabolic syndrome in humans. However, whether or not PLTP has a direct effect on insulin sensitivity and obesity is largely unknown. Here we analyzed the effect by using PLTP knockout (PLTP-/-) mouse model. Although, PLTP-/- mice have normal body-weight-gain under chow diet, these mice were protected from high-fat-diet-induced obesity and insulin resistance, compared with wild type mice. In order to understand the mechanism, we evaluated insulin receptor and Akt activation and found that PLTP deficiency significantly enhanced phosphorylated insulin receptor and Akt levels in high-fat-diet fed mouse livers, adipose tissues, and muscles after insulin stimulation, while total Akt and insulin receptor levels were unchanged. Moreover we found that the deficiency induced significantly more GLUT4 immunostaining in the plasma membranes of adipocytes and muscle cells after insulin stimulation. Finally, we found that PLTP deficient hepatocytes had less sphingomyelin and free cholesterol in the plasma membrane and lipid raft than that of controls and this may provide a molecular basis for PLTP deficiency-mediated increasing in insulin sensitivity. We have concluded that PLTP deficiency leads to an improvement in tissue and whole-body insulin sensitivity in high-fat-diet induced insulin resistance mice model. Foundation:National Natural Science Foundation of China (# 81070247, 81170785) and Taishan Scholar Foundation of Shandong Province.


2014 ◽  
Vol 224 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Xiao-Bing Cui ◽  
Jun-Na Luan ◽  
Jianping Ye ◽  
Shi-You Chen

Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases and many other chronic diseases. Adipose tissue inflammation is a critical link between obesity and insulin resistance and type 2 diabetes and a contributor to disease susceptibility and progression. The objective of this study was to determine the role of response gene to complement 32 (RGC32) in the development of obesity and insulin resistance. WT and RGC32 knockout (Rgc32−/− (Rgcc)) mice were fed normal chow or high-fat diet (HFD) for 12 weeks. Metabolic, biochemical, and histologic analyses were performed. 3T3-L1 preadipocytes were used to study the role of RGC32 in adipocytes in vitro. Rgc32−/− mice fed with HFD exhibited a lean phenotype with reduced epididymal fat weight compared with WT controls. Blood biochemical analysis and insulin tolerance test showed that RGC32 deficiency improved HFD-induced dyslipidemia and insulin resistance. Although it had no effect on adipocyte differentiation, RGC32 deficiency ameliorated adipose tissue and systemic inflammation. Moreover, Rgc32−/− induced browning of adipose tissues and increased energy expenditure. Our data indicated that RGC32 plays an important role in diet-induced obesity and insulin resistance, and thus it may serve as a potential novel drug target for developing therapeutics to treat obesity and metabolic disorders.


2018 ◽  
Vol 315 (5) ◽  
pp. R934-R944 ◽  
Author(s):  
Ankit Gilani ◽  
Varunkumar Pandey ◽  
Victor Garcia ◽  
Kevin Agostinucci ◽  
Shailendra P. Singh ◽  
...  

20-Hydroxyeicosatetraenoic acid (20-HETE) has been shown to positively correlate with body mass index, hyperglycemia, and plasma insulin levels. This study seeks to identify a causal relationship between 20-HETE and obesity-driven insulin resistance. Cyp4a14−/− male mice, a model of 20-HETE overproduction, were fed a regular or high-fat diet (HFD) for 15 wk. 20-SOLA [2,5,8,11,14,17-hexaoxanonadecan-19-yl 20-hydroxyeicosa-6( Z),15( Z)-dienoate], a 20-HETE antagonist, was administered from week 0 or week 7 of HFD. HFD-fed mice gained significant weight (16.7 ± 3.2 vs. 3.8 ± 0.35 g, P < 0.05) and developed hyperglycemia (157 ± 3 vs. 121 ± 7 mg/dl, P < 0.05) and hyperinsulinemia (2.3 ± 0.4 vs. 0.5 ± 0.1 ng/ml, P < 0.05) compared with regular diet-fed mice. 20-SOLA attenuated HFD-induced weight gain (9.4 ± 1 vs. 16.7 ± 3 g, P < 0.05) and normalized the hyperglycemia (157 ± 7 vs. 102 ± 5 mg/dl, P < 0.05) and hyperinsulinemia (1.1 ± 0.1 vs. 2.3 ± 0.4 ng/ml, P < 0.05). The impaired glucose homeostasis and insulin resistance in HFD-fed mice evidenced by reduced insulin and glucose tolerance were also ameliorated by 20-SOLA. Circulatory and adipose tissue 20-HETE levels significantly increased in HFD-fed mice correlating with impaired insulin signaling, including reduction in insulin receptor tyrosine (Y972) phosphorylation and increased serine (S307) phosphorylation of the insulin receptor substrate-1 (IRS-1). 20-SOLA treatments prevented changes in insulin signaling. These findings indicate that 20-HETE contributes to HFD-induced obesity, insulin resistance, and impaired insulin signaling.


2016 ◽  
Vol 310 (9) ◽  
pp. F812-F820 ◽  
Author(s):  
Jonathan M. Nizar ◽  
Wuxing Dong ◽  
Robert B. McClellan ◽  
Mariana Labarca ◽  
Yuehan Zhou ◽  
...  

The majority of patients with obesity, insulin resistance, and metabolic syndrome have hypertension, but the mechanisms of hypertension are poorly understood. In these patients, impaired sodium excretion is critical for the genesis of Na+-sensitive hypertension, and prior studies have proposed a role for the epithelial Na+ channel (ENaC) in this syndrome. We characterized high fat-fed mice as a model in which to study the contribution of ENaC-mediated Na+ reabsorption in obesity and insulin resistance. High fat-fed mice demonstrated impaired Na+ excretion and elevated blood pressure, which was significantly higher on a high-Na+ diet compared with low fat-fed control mice. However, high fat-fed mice had no increase in ENaC activity as measured by Na+ transport across microperfused cortical collecting ducts, electrolyte excretion, or blood pressure. In addition, we found no difference in endogenous urinary aldosterone excretion between groups on a normal or high-Na+ diet. High fat-fed mice provide a model of metabolic syndrome, recapitulating obesity, insulin resistance, impaired natriuresis, and a Na+-sensitive elevation in blood pressure. Surprisingly, in contrast to previous studies, our data demonstrate that high fat feeding of mice impairs natriuresis and produces elevated blood pressure that is independent of ENaC activity and likely caused by increased Na+ reabsorption upstream of the aldosterone-sensitive distal nephron.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Christopher M. Mayer ◽  
Denise D. Belsham

Abstract Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR.


Sign in / Sign up

Export Citation Format

Share Document