scholarly journals Soya proteinβ-conglycinin ameliorates fatty liver and obesity in diet-induced obese mice through the down-regulation of PPARγ

2018 ◽  
Vol 119 (11) ◽  
pp. 1220-1232 ◽  
Author(s):  
Dongyang Li ◽  
Reina Ikaga ◽  
Tomomi Yamazaki

AbstractDiets high in fat can result in obesity and non-alcoholic fatty liver disease (NAFLD). The improvement of obesity and NAFLD is an important issue.β-Conglycinin, one of the soya proteins, is known to prevent hyperlipidaemia, obesity and NAFLD. Therefore, we aimed to investigate the effects ofβ-conglycinin on the improvement of obesity and NAFLD in high-fat (HF) diet-induced obese (DIO) mice and clarify the mechanism underlying these effects in liver and white adipose tissue (WAT). DIO male ddY mice were divided into six groups: HF, medium-fat (MF) and low-fat (LF) groups fed casein, and HF, MF and LF groups in all of which the casein was replaced byβ-conglycinin. A period of 5 weeks later, theβ-conglycinin-supplemented group resulted in lower body weight, relative weight of subcutaneous WAT, and hepatic TAG content (P=0·001). Furthermore,β-conglycinin suppressed the hepatic expression ofPparγ2in the HF dietary group, sterol regulatory element-binding protein-1c and the target genes. The expressions of inflammation-related genes were significantly low in the epididymal and subcutaneous WAT from the mice fedβ-conglycinin compared with those fed casein in the HF dietary group. Moreover, the expressions ofPparγ1andPparγ2mRNA were suppressed in subcutaneous WAT in the HF dietary group but not in epididymal WAT. The concentrations of insulin and leptin were low in the serum of the mice fedβ-conglycinin. In conclusion,β-conglycinin effectively improved obesity and NAFLD in DIO mice, and it appears to be a promising dietary protein for the amelioration of NAFLD and obesity.

2008 ◽  
Vol 416 (2) ◽  
pp. e15-e17 ◽  
Author(s):  
Andrew J. Brown

HBV and HCV (hepatitis B and C viruses respectively) affect hundreds of millions of people globally, and are a major cause of chronic liver disease, including NAFLD (non-alcoholic fatty liver disease). Previous work on HCV-associated fatty liver disease has implicated two transcription factors that are important in lipid metabolism, SREBP1c (sterol-regulatory-element-binding protein 1c) and the LXRα (liver X receptor α). HBV-associated fatty liver disease has been less well-studied. New work from Kim and colleagues in this issue of the Biochemical Journal has provided new insight into how HBV causes fatty liver disease. Investigating HBV's so-called X gene product (HBx), they report that this viral protein directly binds to LXRα in the host liver cells to up-regulate the lipogenic transcription factor, SREBP1c. Also discussed in this commentary is another way that viruses such as HBV and HCV could induce SREBP1c-mediated lipogenesis, via the PI3K (phosphoinositide 3-kinase)–Akt signalling pathway.


2013 ◽  
Vol 6 (2) ◽  
pp. 107-122 ◽  
Author(s):  
Frédéric Capel ◽  
Gaëlle Rolland-Valognes ◽  
Catherine Dacquet ◽  
Manuel Brun ◽  
Michel Lonchampt ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 844 ◽  
Author(s):  
Rafael Salto ◽  
Manuel Manzano ◽  
María Dolores Girón ◽  
Ainara Cano ◽  
Azucena Castro ◽  
...  

High-fat (HF) and rapid digestive (RD) carbohydrate diets during pregnancy promote excessive adipogenesis in offspring. This effect can be corrected by diets with similar glycemic loads, but low rates of carbohydrate digestion. However, the effects of these diets on metabolic programming in the livers of offspring, and the liver metabolism contributions to adipogenesis, remain to be addressed. In this study, pregnant insulin-resistant rats were fed high-fat diets with similar glycemic loads but different rates of carbohydrate digestion, High Fat-Rapid Digestive (HF–RD) diet or High Fat-Slow Digestive (HF–SD) diet. Offspring were fed a standard diet for 10 weeks, and the impact of these diets on the metabolic and signaling pathways involved in liver fat synthesis and storage of offspring were analyzed, including liver lipidomics, glycogen and carbohydrate and lipid metabolism key enzymes and signaling pathways. Livers from animals whose mothers were fed an HF–RD diet showed higher saturated triacylglycerol deposits with lower carbon numbers and double bond contents compared with the HF–SD group. Moreover, the HF–RD group exhibited enhanced glucose transporter 2, pyruvate kinase (PK), acetyl coenzyme A carboxylase (ACC) and fatty acid (FA) synthase expression, and a decrease in pyruvate carboxylase (PyC) expression leading to an altered liver lipid profile. These parameters were normalized in the HF–SD group. The changes in lipogenic enzyme expression were parallel to changes in AktPKB phosphorylation status and nuclear expression in carbohydrate-response element and sterol regulatory element binding proteins. In conclusion, an HF–RD diet during pregnancy translates to changes in liver signaling and metabolic pathways in offspring, enhancing liver lipid storage and synthesis, and therefore non-alcoholic fatty liver disease (NAFLD) risk. These changes can be corrected by feeding an HF–SD diet during pregnancy.


2004 ◽  
Vol 287 (6) ◽  
pp. E1039-E1048 ◽  
Author(s):  
Caroline Améen ◽  
Daniel Lindén ◽  
Britt-Mari Larsson ◽  
Agneta Mode ◽  
Agneta Holmäng ◽  
...  

We investigated whether the sexually dimorphic secretory pattern of growth hormone (GH) in the rat regulates hepatic gene expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its target genes. SREBP-1c, fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (GPAT) mRNA were more abundant in female than in male livers, whereas acetyl-CoA carboxylase-1 (ACC1) and stearoyl-CoA desaturase-1 (SCD-1) were similarly expressed in both sexes. Hypophysectomized female rats were given GH as a continuous infusion or as two daily injections for 7 days to mimic the female- and male-specific GH secretory patterns, respectively. The female pattern of GH administration increased the expression of SREBP-1c, ACC1, FAS, SCD-1, and GPAT mRNA, whereas the male pattern of GH administration increased only SCD-1 mRNA. FAS and SCD-1 protein levels were regulated in a similar manner by GH. Incubation of primary rat hepatocytes with GH increased SCD-1 mRNA levels and decreased FAS and GPAT mRNA levels but had no effect on SREBP-1c mRNA. GH decreased hepatic liver X receptor-α (LXRα) mRNA levels both in vivo and in vitro. Feminization of the GH plasma pattern in male rats by administration of GH as a continuous infusion decreased insulin sensitivity and increased expression of FAS and GPAT mRNA but had no effect on SREBP-1c, ACC1, SCD-1, or LXRα mRNA. In conclusion, FAS and GPAT are specifically upregulated by the female secretory pattern of GH. This regulation is not a direct effect of GH on hepatocytes and does not involve changed expression of SREBP-1c or LXRα mRNA but is associated with decreased insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document