Investigations on Trichogramma lutea, Gir., as a Parasite of the Cotton Bollworm, Heliothis obsoleta, Fabr.

1936 ◽  
Vol 27 (2) ◽  
pp. 219-235 ◽  
Author(s):  
F. S. Parsons ◽  
G. C. Ullyett

Some of the problems involved in the estimation of parasitism in populations of Heliothis eggs are discussed:—(a) Effective parasitism of the “active fraction” of eggs as laid in situ is denned.(b) The habits of the egg-laying moth in point of the duration of oviposition on individual crops and diversion of moth activity from one host to another are discussed in relation to releases of Trichogramma lutea. Data are given on the distribution of bollworm eggs in a crop and associated factors.(c) Investigations on the dispersion of liberated parasites are described. Dispersion was found to be rapid and widespread; concerted activity by large numbers in given areas did not apply.Investigations in rain-grown crops are described and results are quoted from a typical experiment in maize, wherein the percentages of parasitism recorded in a large number of equal sections of the crop are regressed on proportionate larval survival. Although the egg parasitism ranged from 21·2 per cent, to 82·3 per cent., differences in larval populations were inappreciable. An explanation for this is offered in an analysis of the effect of various mortality factors.The parasite was relatively ineffective in cotton crops. The low degrees of parasitism found are assigned to the growth-habit of the plant, the scattered manner of egg deposition thereon and the impediment offered to the insect by the dense hair processes of the plant at many sites where eggs are commonly placed.Investigations on irrigated (cool season) market-garden crops and citrus orchards are described. These form the principal breeding sources of summer bollworm. Oviposition is extensive and sustained for three to four months on these crops, thereby affording opportunity for continuous parasite activity and the cumulative participation of progeny bred in the field. In nature Trichogramma lutea does not, however, appear until the latter end of the egg-laying by Heliothis and the authors were unable to establish laboratory-bred representatives at an earlier period.Another egg parasite, Phanurus ullyetti, is prevalent before Trichogramma appears and accomplishes much that was hoped for from the attempted earlier introduction of Trichogramma. In effect, the latter, as seen from diagrams furnished with the paper, becomes substituted for Phanurus toward the close of the winter season. It is probable that temperature is a determining factor in the biology of both parasites, although other causes for the observed relations are suggested.Further investigations are needed on the subject of exploiting T. lutea in the cool season.

1948 ◽  
Vol 26d (1) ◽  
pp. 8-25 ◽  
Author(s):  
A. Wilkes ◽  
G. E. Bucher ◽  
J. W. MacB. Cameron ◽  
A. S. West Jr.

Using the Peet-Grady method for propagating houseflies required as biological test animals, variations were observed that had considerable bearing on production and subsequent adult life. Differences in length of life, fecundity, time of emergence of the adults from puparia, and the onset of egg laying occurred between different populations of flies. Investigations were carried out to determine the extent and causes of the variations and to develop more suitable techniques for producing large numbers on a more accurately predictable basis. Variability in production of puparia was found to be due largely to the age of female stock and rate of fermentation in the rearing medium through their effects on egg hatchability and larval survival and excessive crowding caused by high temperatures. By using eggs from genetically-selected stock of known age and rearing in a temperature-controlled medium, production of flies was increased and maintained at a constantly uniform rate. A description is given of the equipment and methods used.


2015 ◽  
Vol 8 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Lynn C. Sweet ◽  
Jodie S. Holt

Southern California grasslands have largely been type-converted to dominance by exotic annual grasses, leading to displacement of many native grass and forb species. Crimson fountaingrass, Pennisetum setaceum, an exotic perennial C4 species and a relatively new invader to California, is expanding to areas currently occupied by purple needlegrass, Stipa pulchra, a C3 native. We predicted that fountaingrass seedlings might withstand cool season competition in California's Mediterranean-type climate and establish in Stipa pulchra grasslands due to less competition during the warm, dry summer season, and that interactions might be influenced by density. A field experiment was conducted to examine competitive interactions of the two species from the cool winter season to the warm summer season. As predicted, Stipa produced greater aboveground biomass in the cool season and showed strong intraspecific competition, as well as interspecific suppression of Pennisetum growth, whereas Pennisetum showed no suppression of Stipa. In the warm season, Stipa showed relatively less suppression of Pennisetum, erasing significant differences, and Pennisetum showed increased growth. Results of this study show that C3Stipa can suppress initial growth of C4Pennisetum in the cool season, but in warmer months, Pennisetum can overcome this initial suppression at both low and high densities, even within a Mediterranean-type climate with little to no summer rainfall. Thus, in southern California, temporal niche partitioning due to photosynthetic pathway in these two species can allow Pennisetum invasion. Given the similarity in life history and growth form of Stipa and Pennisetum, few options exist for controlling Pennisetum in habitats where Stipa occurs. In these cases, restoration plantings of desirable species are essential in order to reestablish competitive vegetation that will be more resistant to invasion.


Author(s):  
John B. Buchanan

Previous work on the biology and distribution of Calocaris is discussed briefly. The distribution in Northumberland waters is considered in relation to depth and bottom sediment.Quantitative monthly samples show that population numbers remain very stable throughout the year. A well marked egg-laying period occurs in January-February when relatively few eggs (average 38) are attached to the pleopods. Eggs are carried for 8–9 months and hatch in September-October. By a combination of size-frequency distribution and gonad-developmnt classification the age-groups in the population are interpreted. After passing through a phase of testes development and spermatophore formation individuals lay their first batch of eggs at the end of the 5th year. The ovaries regenerate over a 2-year period and a second egg-laying takes place at the end of the 7th year with a possible third at the end of the 9th year. The incidence of soft individuals in the samples together with observed changes in the coverage with epifaunistic growths indicate that after entering the 5th year a single annual moult cycle begins with a slowing down in growth rate.Population numbers, fecundity and larval survival are discussed. Both the survival curve and the apparent lack of serious predation suggest that the population reaches senescence


1979 ◽  
Vol 42 (4) ◽  
pp. 1185-1197 ◽  
Author(s):  
E. Mayeri ◽  
P. Brownell ◽  
W. D. Branton

1. A survey of identified cells of the abdominal ganglion of Aplysia was undertaken to determine the extent of bag cell influence in the ganglion. Bursts of bag cell spike activity lasting 5--40 min were elicited by brief, 0.6- to 2 s local stimulation while recording simultaneously from bag cells and other ganglion cells with intracellular electrodes. 2. Slow inhibition occurs in giant cell R2, neurosecretory cells R3-R14, and ink-gland motoneurons, L14A, B, C. The cells remain hyperpolarized for from 15 to 60 min. 3. Transient excitation occurs in mechanoreceptor cells L1 and R1. The cells are strongly depolarized by a slow excitatory potential that lasts for about 10 min and produces spike activity for 3--7 min. 4. Prolonged excitation occurs in some cells of the LB and LC identified cell clusters. The cells are depolarized and spike activity is increased for 3 h or more. 5. A biphasic response occasionally occurs in the command interneuron L10. Inhibition of this cell lasts 10--15 min and is followed by excitation for several hours. Excitation is accompanied by facilitation of synaptic potentials for 40--60 min in cells innervated by L10; the facilitation apparently results from the increase in L10 firing rate. 6. The results indicate that the bag cells have multiple types of actions and affect large numbers of ganglion neurons. All effects have the slowly graded onsets and prolonged durations to be expected of hormonally mediated interactions. 7. Previous studies have indicated that in intact animals the bag cell burst discharge initates a stereotyped egg-laying behavioral pattern that persists for several hours (3, 27). The present data support the hypothesis that certain elements of egg-laying behavior and homeostasis are regulated by a direct action of the bag cells on the central nervous system.


2017 ◽  
Vol 2 (1) ◽  
pp. 1-6
Author(s):  
Jean Carlos Santos ◽  
Rodrigo De Queiroga Miranda ◽  
Jarcilene Silva de Almeida-Cortez

Galls are characterized by inducing cellular differentiation (hyperplasia or hypertrophy) resultant of the action of some organisms, mainly insects, on structures/organs of their host plants. The galls cause physiological changes in host plants, altering host traits, and their growth and survival. The early abscission of galled plant organs can be a form of plant defense. Therefore, the galls decayed more slowly than the healthy leaves, or the surrounding healthy leaf tissue in some abscised galled leaves, forming “green island galls”. This study reported an instance where the host plant Miconia cinnamomifolia (Melastomataceae) abscises leaves galled by an unidentified coleopteran’s gall on the soil of a fragment of Atlantic Forests, Brazil. Once on the forest soil galls were exposed to a new set of potential natural enemies, as pathogens and predators. Consequently, larval survival decrease of 79% to 36% in four months and fungal infestation increase of 2% to 21%. Neither size nor weight of the galls differed between categories of mortality factors and larval survival. It was discussed the adaptive nature of the “Green Island Effect” as a counter-response of gallers to leaf abscission, which is a known plant defense strategy.


2014 ◽  
Vol 24 (6) ◽  
pp. 696-701 ◽  
Author(s):  
Wiley Carroll Johnson ◽  
Jerry W. Davis

Cultivation using a tine weeder is a proven means to manage weeds in organic Vidalia® sweet onion (Allium cepa) production. If the initial cultivation is delayed, emerged weeds are not controlled. In these cases, herbicides derived from natural products could be used to control the emerged weeds before the initial cultivation. Clove oil has been evaluated for this use, but cool-season weed control is inconsistent during the winter season when Vidalia® sweet onion are grown. Pelargonic acid is a herbicide that can be derived from natural sources or synthesized. Field trials were conducted from 2011 through 2013 to determine the efficacy of pelargonic acid for cool-season weed control in organic Vidalia® sweet onion. All possible combinations of four herbicides and three cultivation regimes using a tine weeder were evaluated. Herbicides evaluated were pelargonic acid (3% and 5% by vol.), clove oil [10% by vol. (2011 and 2012)], d-limonene [14% (2013 only)], and a nontreated control. Cultivation regimes were twice (2×) and four times (4×) at 2-week intervals, and a noncultivated control. Main effects of cultivation and herbicides were independent for all parameters, with no improvement when used in combination. Cultivation 2× and 4× controlled cool-season weeds and improved onion yields, which is consistent with previous research. Pelargonic acid (5%) controlled weeds similar to clove oil (2011 and 2012) and d-limonene (2013), with cool-season weed control efficacy being inconsistent among all herbicides. Onion yield response to weed control from any of the herbicides, including pelargonic acid, also was inconsistent. In organic onion production, inconsistent cool-season performance using pelargonic acid is similar to other herbicides derived from natural sources.


Sign in / Sign up

Export Citation Format

Share Document