Evaluation of native plant flower characteristics for conservation biological control ofPrays oleae

2016 ◽  
Vol 106 (2) ◽  
pp. 249-257 ◽  
Author(s):  
A. Nave ◽  
F. Gonçalves ◽  
A.L. Crespí ◽  
M. Campos ◽  
L. Torres

AbstractSeveral studies have shown that manipulating flowering weeds within an agroecosystem can have an important role in pest control by natural enemies, by providing them nectar and pollen, which are significant sources of nutrition for adults. The aim of this study was to assess if the olive moth,Prays oleae(Bernard, 1788) (Lepidoptera: Praydidae), and five of its main natural enemies, the parasitoid speciesChelonus elaeaphilusSilvestri (Hymenoptera: Braconidae),Apanteles xanthostigma(Haliday) (Hymenoptera: Braconidae),Ageniaspis fuscicollis(Dalman) (Hymenoptera: Encyrtidae) andElasmus flabellatus(Fonscolombe) (Hymenoptera: Eulophidae), as well as the predatorChrysoperla carnea(Stephens) (Neuroptera: Chrysopidae), can theoretically access the nectar from 21 flowering weeds that naturally occur in olive groves. Thus, the architecture of the flowers as well as the mouthpart structure and/or the head and thorax width of the pest and its enemies were analyzed. The results suggested that all beneficial insects were able to reach nectar of the plant species from Apiaceae family, i.e.Conopodium majus(Gouan) Loret,Daucus carotaL. andFoeniculum vulgareMill., as well asAsparagus acutifoliusL.,Echium plantagineumL.,Capsella bursa-pastoris(L.) Medik.,Raphanus raphanistrumL.,Lonicera hispanicaBoiss. et Reut.,Silene gallicaL.,Spergula arvensisL.,Hypericum perforatumL.,Calamintha baeticaBoiss. et Reut,Malva neglectaWallr. andLinaria saxatilis(L.) Chaz.P. oleaewas not able to access nectar from five plant species, namely:Andryala integrifoliaL.,Chondrilla junceaL.,Dittrichia viscosa(L.) Greuter,Sonchus asper(L.) Hill andLavandula stoechasL.

2021 ◽  
Vol 11 (4) ◽  
pp. 1769
Author(s):  
María Noelia Jiménez ◽  
Gianluigi Bacchetta ◽  
Francisco Bruno Navarro ◽  
Mauro Casti ◽  
Emilia Fernández-Ondoño

The use of plant species to stabilize and accumulate trace elements in contaminated soils is considered of great usefulness given the difficulty of decontaminating large areas subjected to mining for long periods. In this work, the bioaccumulation of trace elements is studied by relating the concentrations in leaves and roots of three plants of Mediterranean distribution (Dittrichia viscosa, Cistus salviifolius, Euphorbia pithyusa subsp. cupanii) with the concentrations of trace elements in contaminated and uncontaminated soils. Furthermore, in the case of D. viscosa, to know the concentration of each element by biomass, the pool of trace elements was determined both in the aerial part and in the roots. The bioaccumulation factor was not high enough in any of the species studied to be considered as phytoextractors. However, species like the ones studied in this work that live on soils with a wide range of concentration of trace elements and that develop a considerable biomass could be considered for stabilization of contaminated soils. The plant species studied in this work are good candidates for gentle-remediation options in the polluted Mediterranean.


2007 ◽  
Vol 42 (4) ◽  
pp. 439-456 ◽  
Author(s):  
B. E. Witting ◽  
D. B. Orr ◽  
H. M. Linker

Two studies were conducted to evaluate the relative attractiveness of floral habitats that may provide nectar and pollen food resources to natural enemies of agricultural insect pests in North Carolina. In the first study, timed observations were made of insect flower-feeding to estimate attraction of natural enemies to 16 plant species in 2004 and 5 plant species in 2005. Insects were identified to the family level and assigned to 1 of 6 feeding groups. In both years, crop predators fed from fennel (Foeniculum vulgare P. Mill.) flowers in greater abundance than from any other flowers observed. Crop parasitoids fed most often on fennel in 2005. In both years, the remaining insect feeding groups other than pollinators were not significantly affected by flower species. In 2005 the response of representatives of 3 families of egg parasitoids (Mymaridae, Scelionidae, and Trichogrammatidae) to 6 habitat plants (black-eyed Susan, buckwheat, fennel, cock's comb [Celosia cristata L.], Shasta daisy [Leucanthemum × superbum (J. W. Ingram) Berg, ex Kent.], and yarrow [Achillea millefolium L.]) was determined. Crabgrass (Digitaria spp. Haller), that exhibited no obvious flowering, served as a control. Results demonstrated that flower species and height affected insects of all 3 families of parasitoids, but removal of flowers only affected scelionids which were trapped in greater abundance in cock's comb plots at flower height. Mymarids were most abundant at 0.5 times the flower height in black-eyed Susan plots regardless of flower presence, and trichogrammatids were trapped in greatest abundance at 0.5 times the canopy height in unmowed crabgrass plots. Our results indicate that habitat plantings may attract egg parasitoids, but that flowers themselves do not appear to be responsible for this attraction.


EDIS ◽  
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Carey Minteer ◽  
Eutychus Kariuki ◽  
James P. Cuda

Invasive plants are non-native plant species that cause harm in their introduced range. Classical biological control of invasive plants is the use of natural enemies, imported insects and mites or pathogens, to control the target plants. This publication explains the strategies and rules in place to ensure that organisms released for the biological control of weeds are safe and effective.


2015 ◽  
Vol 16 (2) ◽  
pp. 87-95 ◽  
Author(s):  
N. Grant-Hoffman ◽  
S. Parr ◽  
T. Blanke

2017 ◽  
Vol 18 (3) ◽  
pp. 227-234
Author(s):  
Jessica D Lubell ◽  
Bryan Connolly ◽  
Kristina N Jones

Rhodora ◽  
10.3119/18-11 ◽  
2019 ◽  
Vol 121 (987) ◽  
pp. 159
Author(s):  
Adam J. Ramsey ◽  
Steven M. Ballou ◽  
Jennifer R. Mandel

2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Hosam M. K. H. El-Gepaly

AbstractSorghum panicles offer a very rich microenvironment for many insect pest species and their natural enemies. Thirty arthropod species belonging to 28 families, pertaining to 9 orders were obtained from sorghum panicles planted in Sohag Governorate, Egypt, during the 3 successive seasons of 2016–2018. Out of these species were 14 pests, 16 predators, and 3 parasitoids. Lepidopteran and hemipteran pests were the most dominant species-infested sorghum-panicles during the mature stages of the panicles. Three microlepidopteran pests, the noctuid, Eublemma (Autoba) gayneri (Roth.); the pyralid, Cryptoblabes gnidiella Millière, and the cosmopterigid, Pyroderces simplex Walsingham, were recorded as major pest species infesting sorghum panicles in Sohag Governorate. The dipteran parasitoid species, Nemorilla floralis (Fallen) (Tachinidae) emerged from the pupae of the E. gayneri and C. gnidiella, while the hymenopteran parasitoid, Brachymeria aegyptiaca (Chalcididae) was obtained from the pupae of all the studied microlepidopteran pests. Spiders, coccinellids, and Orius spp. were the dominant predators collected form panicles. Post-harvest, larvae, and pupae of lepidopteran pests, especially P. simplex recorded (147, 96, and 79 larvae) and (47, 30, and 73 pupae)/10 panicles in 2016, 2017, and 2018 seasons, respectively.


Sign in / Sign up

Export Citation Format

Share Document