Patterns and drivers of genetic diversity and structure in the biological control parasitoid Habrobracon hebetor in Niger

2019 ◽  
Vol 109 (6) ◽  
pp. 794-811
Author(s):  
M. Garba ◽  
A. Loiseau ◽  
C. Tatard ◽  
L. Benoit ◽  
N. Gauthier

AbstractWhen a promising natural enemy of a key pest exists locally, it is a common practice in biological control (BC) to rear and release it for supplementary control in the targeted agroecosystem even though significant knowledge gaps concerning pre/post release may still exist. Incorporating genetic information into BC research fills some of these gaps. Habrobracon hebetor, a parasitoid of many economically important moths that infest stored and field crops worldwide is commonly used, particularly against the millet head miner (MHM), a key pest of millet in Sahelian countries. To advance our knowledge on how H. hebetor that occurs naturally in open-field cropping systems and grain stores as well as being mass-produced and released for MHM control, performs in millet agroecosystems in Niger we evaluated its population genetics using two mitochondrial and 21 microsatellite markers. The field samples were genetically more diverse and displayed heterozygote excess. Very few field samples had faced significant recent demographic bottlenecks. The mating system (i.e. nonrandom mating with complementary sex determination) of this species may be the major driver of these findings rather than bottlenecks caused by the small number of individuals released and the scarcity of hosts during the longlasting dry season in Niger. H. hebetor population structure was represented by several small patches and genetically distinct individuals. Gene flow occurred at local and regional scales through human-mediated and natural short-distance dispersal. These findings highlight the importance of the mating system in the genetic diversity and structure of H. hebetor populations, and contribute to our understanding of its reported efficacy against MHM in pearl millet fields.

2019 ◽  
Vol 37 (4) ◽  
pp. 222-232 ◽  
Author(s):  
Melissa A Millar ◽  
Janet M Anthony ◽  
David J Coates ◽  
Margaret Byrne ◽  
Siegfried L Krauss ◽  
...  

2013 ◽  
Vol 20 (6) ◽  
pp. 676-684 ◽  
Author(s):  
Wang Xia ◽  
Wang Jing ◽  
Jiang Jinghu ◽  
Kang Ming

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fehintola V. Ajogbasile ◽  
Adeyemi T. Kayode ◽  
Paul E. Oluniyi ◽  
Kazeem O. Akano ◽  
Jessica N. Uwanibe ◽  
...  

Abstract Background Malaria remains a public health burden especially in Nigeria. To develop new malaria control and elimination strategies or refine existing ones, understanding parasite population diversity and transmission patterns is crucial. Methods In this study, characterization of the parasite diversity and structure of Plasmodium falciparum isolates from 633 dried blood spot samples in Nigeria was carried out using 12 microsatellite loci of P. falciparum. These microsatellite loci were amplified via semi-nested polymerase chain reaction (PCR) and fragments were analysed using population genetic tools. Results Estimates of parasite genetic diversity, such as mean number of different alleles (13.52), effective alleles (7.13), allelic richness (11.15) and expected heterozygosity (0.804), were high. Overall linkage disequilibrium was weak (0.006, P < 0.001). Parasite population structure was low (Fst: 0.008–0.105, AMOVA: 0.039). Conclusion The high level of parasite genetic diversity and low population structuring in this study suggests that parasite populations circulating in Nigeria are homogenous. However, higher resolution methods, such as the 24 SNP barcode and whole genome sequencing, may capture more specific parasite genetic signatures circulating in the country. The results obtained can be used as a baseline for parasite genetic diversity and structure, aiding in the formulation of appropriate therapeutic and control strategies in Nigeria.


2004 ◽  
Vol 31 (2) ◽  
pp. 86-91 ◽  
Author(s):  
D. T. Gooden ◽  
H. D. Skipper ◽  
J. H. Kim ◽  
K. Xiong

Abstract Rhizobacteria play an important role in sustainable agriculture via plant growth and biological control of pests in a number of ecosystems. Understanding the interactions of crop rotation and rhizobacteria on peanut production is a critical research need. Development of a database on the rhizobacteria obtained from continuous and rotational fields of peanut was initiated in 1997 and terminated in 2000. Peanut was planted in monoculture for 4 yr. In rotational plots, peanut, cotton, corn, and peanut were planted in sequence. Rhizobacteria were isolated from the roots of crop plants grown in a Norfolk soil near Florence, SC. These isolates were identified by composition of fatty acids from gas chromatography analysis (GC/FAME). Arthrobacter and Bacillus were the major genera from non-rhizosphere soils. At initiation of this study in July 1997, the plots selected for continuous peanut had more diversity in rhizobacteria than those plots selected for rotation. In July 2000, rhizobacteria diversity was greater from peanut roots in the rotation cropping system than continuous peanut. Even though rhizobacteria diversity was greater in the rotation system, higher peanut yields were recorded in the continuous peanut system in 2000. Burkholderia spp. were always isolated from the peanut and other crop rhizospheres at each sampling date.


2009 ◽  
Vol 282 (1-2) ◽  
pp. 57-70 ◽  
Author(s):  
Majid Sharifi Tehrani ◽  
Mohsen Mardi ◽  
Jamal Sahebi ◽  
Pilar Catalán ◽  
Antonio Díaz-Pérez

2011 ◽  
Vol 39 (4-6) ◽  
pp. 594-599 ◽  
Author(s):  
Vanda Marilza de Carvalho ◽  
Carlos Alexandre Marochio ◽  
Claudete Aparecida Mangolin ◽  
Maria de Fátima Pires da Silva Machado

Sign in / Sign up

Export Citation Format

Share Document