scholarly journals Length functions on hypercentral groups

1985 ◽  
Vol 28 (3) ◽  
pp. 303-304
Author(s):  
David L. Wilkens

In [6] the structure of any real valued length function on an abelian group G is determined. It is shown there, in Theorem 6.1., that such a length function is an extension of a non-Archimedean length function l1 on N by an Archimedean length function l2 on H=G/N. Any non-Archimedean length function is given by a chain of subgroups, as described in [5], and following from results of Nancy Harrison [2], the length l2 is essentially the absolute value function on a subgroup of R. In the situation above if N≠G then N is a subgroup of G whose elements have bounded lengths. In this paper we show that it is an easy consequence of techniques developed in [1] that this result can be extended to hypercentral groups, thus determining the structure of any length function in this case. We point out that the result does not extend to soluble groups. The infinite dihedral group D∞ is soluble. However if D∞ is regarded as a free product of two cyclic groups of order 2 and is given the length function associated with a free product, as described by Lyndon [3], then N is not a subgroup of D∞, and the lengths of its elements are unbounded.

Author(s):  
Shoichi Kondo

This paper proves that the infinite dihedral group is only such a free product of two finite groups that its group algebra over a field [Formula: see text] is a CS-ring in case the orders of two groups are not zero in [Formula: see text]. Furthermore, it is shown that the group algebra of any free product of two finite cyclic groups does not satisfy the condition [Formula: see text].


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Naomi Andrew

AbstractWe provide some necessary and some sufficient conditions for the automorphism group of a free product of (freely indecomposable, not infinite cyclic) groups to have Property (FA). The additional sufficient conditions are all met by finite groups, and so this case is fully characterised. Therefore, this paper generalises the work of N. Leder [Serre’s Property FA for automorphism groups of free products, preprint (2018), https://arxiv.org/abs/1810.06287v1]. for finite cyclic groups, as well as resolving the open case of that paper.


1973 ◽  
Vol 15 (4) ◽  
pp. 428-429 ◽  
Author(s):  
G. J. Hauptfleisch

If A, B, H, K are abelian group and φ: A → H and ψ: B → K are epimorphisms, then a given central group extension G of H by K is not necessarily a homomorphic image of a group extension of A by B. Take for instance A = Z(2), B = Z ⊕ Z, H = Z(2), K = V4 (Klein's fourgroup). Then the dihedral group D8 is a central extension of H by K but it is not a homomorphic image of Z ⊕ Z ⊕ Z(2), the only group extension of A by the free group B.


1998 ◽  
Vol 18 (3) ◽  
pp. 687-702 ◽  
Author(s):  
NANTIAN QIAN ◽  
CHENGBO YUE

Let $\rho_0$ be the standard action of a higher-rank lattice $\Gamma$ on a torus by automorphisms induced by a homomorphism $\pi_0:\Gamma\to SL(n,{\Bbb Z})$. Assume that there exists an abelian group ${\cal A}\subset \Gamma$ such that $\pi_0({\cal A})$ satisfies the following conditions: (1) ${\cal A}$ is ${\Bbb R}$-diagonalizable; (2) there exists an element $a\in {\cal A}$, such that none of its eigenvalues $\lambda_1,\dots,\lambda_n$ has unit absolute value, and for all $i,j,k=1,\dots,n$, $|\lambda_i\lambda_j|\neq|\lambda_k|$; (3) for each Lyapunov functional $\chi_i$, there exist finitely many elements $a_j\in {\cal A}$ such that $E_{\chi_i}=\cap_{j} E^u(a_j)$ (see \S1 for definitions). Then $\rho_0$ is locally rigid. This local rigidity result differs from earlier ones in that it does not require a certain one-dimensionality condition.


2016 ◽  
Vol 161 (1) ◽  
pp. 143-156
Author(s):  
BRITA E. A. NUCINKIS ◽  
NANSEN PETROSYAN

AbstractBy considering the Bredon analogue of complete cohomology of a group, we show that every group in the class$\cll\clh^{\mathfrak F}{\mathfrak F}$of type Bredon-FP∞admits a finite dimensional model for$E_{\frak F}G$.We also show that abelian-by-infinite cyclic groups admit a 3-dimensional model for the classifying space for the family of virtually nilpotent subgroups. This allows us to prove that for$\mathfrak {F}$, the class of virtually cyclic groups, the class of$\cll\clh^{\mathfrak F}{\mathfrak F}$-groups contains all locally virtually soluble groups and all linear groups over${\mathbb{C}}$of integral characteristic.


10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


1970 ◽  
Vol 22 (4) ◽  
pp. 827-835 ◽  
Author(s):  
James McCool

A group P is said to be a CEF-group if, for every countable group G, there is a factor group of P which contains a subgroup isomorphic to G. It was shown by Higman, Neumann, and Neumann [5] that the free group of rank two is a CEF-group. More recently, Levin [6] proved that if P is the free product of two cyclic groups, not both of order two, then P is a CEF-group. Later, Hall [3] gave an alternative proof of Levin's result.In this paper we give a new proof of Levin's result (Theorem 2). The proof given yields information about the factor group H of P in which a given countable group G is embedded; for example, if G is given by a recursive presentation (this concept is denned in [4]), then a recursive presentation is obtained for H, and certain decision problems (in particular, the word problem) are solvable for the recursive presentation obtained for H if and only if they are solvable for the given recursive presentation of G.


1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.


2020 ◽  
Vol 29 (01) ◽  
pp. 1950097
Author(s):  
Jacob Mostovoy ◽  
Christopher Roque-Márquez

The group of planar (or flat) pure braids on [Formula: see text] strands, also known as the pure twin group, is the fundamental group of the configuration space [Formula: see text] of [Formula: see text] labeled points in [Formula: see text] no three of which coincide. The planar pure braid groups on 3, 4 and 5 strands are free. In this note, we describe the planar pure braid group on 6 strands: it is a free product of the free group on 71 generators and 20 copies of the free abelian group of rank two.


Sign in / Sign up

Export Citation Format

Share Document