scholarly journals POSITIVE SEMIDEFINITENESS OF DISCRETE QUADRATIC FUNCTIONALS

2003 ◽  
Vol 46 (3) ◽  
pp. 627-636 ◽  
Author(s):  
Martin Bohner ◽  
Ondřej Došlý ◽  
Werner Kratz

AbstractWe consider symplectic difference systems, which contain as special cases linear Hamiltonian difference systems and Sturm–Liouville difference equations of any even order. An associated discrete quadratic functional is important in discrete variational analysis, and while its positive definiteness has been characterized and is well understood, a characterization of its positive semidefiniteness remained an open problem. In this paper we present the solution to this problem and offer necessary and sufficient conditions for such discrete quadratic functionals to be non-negative definite.AMS 2000 Mathematics subject classification: Primary 39A12; 39A13. Secondary 34B24; 49K99


2007 ◽  
Vol 14 (4) ◽  
pp. 737-768
Author(s):  
Tomoyuki Tanigawa

Abstract We are concerned with the oscillatory and nonoscillatory behavior of solutions of differential equations involving an even order nonlinear Sturm–Liouville operator of the form where α and β are distinct positive constants. We first give the criteria for the existence of nonoscillatory solutions with specific asymptotic behavior on infinite intervals, and then derive necessary and sufficient conditions for all solutions of (∗) to be oscillatory by eliminating all nonoscillatory solutions of (∗).



2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.



2018 ◽  
Vol 50 (1) ◽  
pp. 71-102 ◽  
Author(s):  
Natalia Pavlovna Bondarenko

The inverse problem of spectral analysis for the non-self-adjoint matrix Sturm-Liouville operator on a finite interval is investigated. We study properties of the spectral characteristics for the considered operator, and provide necessary and sufficient conditions for the solvability of the inverse problem. Our approach is based on the constructive solution of the inverse problem by the method of spectral mappings. The characterization of the spectral data in the self-adjoint case is given as a corollary of the main result.



2001 ◽  
Vol 32 (3) ◽  
pp. 201-209 ◽  
Author(s):  
E. Thandapani ◽  
B. Ponnammal

The authors consider the two-dimensional difference system$$ \Delta x_n = b_n g (y_n) $$ $$ \Delta y_n = -f(n, x_{n+1}) $$where $ n \in N(n_0) = \{ n_0, n_0+1, \ldots \} $, $ n_0 $ a nonnegative integer; $ \{ b_n \} $ is a real sequence, $ f: N(n_0) \times {\rm R} \to {\rm R} $ is continuous with $ u f(n,u) > 0 $ for all $ u \ne 0 $. Necessary and sufficient conditions for the existence of nonoscillatory solutions with a specified asymptotic behavior are given. Also sufficient conditions for all solutions to be oscillatory are obtained if $ f $ is either strongly sublinear or strongly superlinear. Examples of their results are also inserted.



Author(s):  
E. N. Dzhafarov ◽  
Ru Zhang ◽  
Janne Kujala

Most behavioural and social experiments aimed at revealing contextuality are confined to cyclic systems with binary outcomes. In quantum physics, this broad class of systems includes as special cases Klyachko–Can–Binicioglu–Shumovsky-type, Einstein–Podolsky–Rosen–Bell-type and Suppes–Zanotti–Leggett–Garg-type systems. The theory of contextuality known as contextuality-by-default allows one to define and measure contextuality in all such systems, even if there are context-dependent errors in measurements, or if something in the contexts directly interacts with the measurements. This makes the theory especially suitable for behavioural and social systems, where direct interactions of ‘everything with everything’ are ubiquitous. For cyclic systems with binary outcomes, the theory provides necessary and sufficient conditions for non-contextuality, and these conditions are known to be breached in certain quantum systems. We review several behavioural and social datasets (from polls of public opinion to visual illusions to conjoint choices to word combinations to psychophysical matching), and none of these data provides any evidence for contextuality. Our working hypothesis is that this may be a broadly applicable rule: behavioural and social systems are non-contextual, i.e. all ‘contextual effects’ in them result from the ubiquitous dependence of response distributions on the elements of contexts other than the ones to which the response is presumably or normatively directed.



2018 ◽  
Vol 23 (4) ◽  
pp. 65 ◽  
Author(s):  
Kaijun Peng ◽  
Jieqing Tan ◽  
Zhiming Li ◽  
Li Zhang

In this paper, a ternary 4-point rational interpolation subdivision scheme is presented, and the necessary and sufficient conditions of the continuity are analyzed. The generalization incorporates existing schemes as special cases: Hassan–Ivrissimtzis’s scheme, Siddiqi–Rehan’s scheme, and Siddiqi–Ahmad’s scheme. Furthermore, the fractal behavior of the scheme is investigated and analyzed, and the range of the parameter of the fractal curve is the neighborhood of the singular point of the rational scheme. When the fractal curve and surface are reconstructed, it is convenient for the selection of parameter values.



2007 ◽  
Vol 12 (2) ◽  
pp. 215-226 ◽  
Author(s):  
Sigita Pečiulytė ◽  
Artūras Štikonas

Positive eigenvalues and corresponding eigenfunctions of the linear Sturm‐Liouville problem with one classical boundary condition and another nonlocal two‐point boundary condition are considered in this paper. Four cases of nonlocal two‐point boundary conditions are analysed. We get positive eigenfunctions existence domain for each case of these problems. This domain depends on the parameters of the nonlocal boundary problem and it gives necessary and sufficient conditions for existing positive eigenvalues with positive eigenfunctions.



2006 ◽  
Vol 49 (2) ◽  
pp. 309-329 ◽  
Author(s):  
Rostyslav O. Hryniv ◽  
Yaroslav V. Mykytyuk

AbstractWe solve the inverse spectral problems for the class of Sturm–Liouville operators with singular real-valued potentials from the Sobolev space $W^{s-1}_2(0,1)$, $s\in[0,1]$. The potential is recovered from two spectra or from one spectrum and the norming constants. Necessary and sufficient conditions for the spectral data to correspond to a potential in $W^{s-1}_2(0,1)$ are established.



1995 ◽  
Vol 11 (1) ◽  
pp. 122-150 ◽  
Author(s):  
Robert F. Engle ◽  
Kenneth F. Kroner

This paper presents theoretical results on the formulation and estimation of multivariate generalized ARCH models within simultaneous equations systems. A new parameterization of the multivariate ARCH process is proposed, and equivalence relations are discussed for the various ARCH parameterizations. Constraints sufficient to guarantee the positive definiteness of the conditional covariance matrices are developed, and necessary and sufficient conditions for covariance stationarity are presented. Identification and maximum likelihood estimation of the parameters in the simultaneous equations context are also covered.



2009 ◽  
Vol 16 (02) ◽  
pp. 293-308 ◽  
Author(s):  
Qingwen Wang ◽  
Guangjing Song ◽  
Xin Liu

We establish the formulas of the maximal and minimal ranks of the common solution of certain linear matrix equations A1X = C1, XB2 = C2, A3XB3 = C3 and A4XB4 = C4 over an arbitrary division ring. Corresponding results in some special cases are given. As an application, necessary and sufficient conditions for the invariance of the rank of the common solution mentioned above are presented. Some previously known results can be regarded as special cases of our results.



Sign in / Sign up

Export Citation Format

Share Document