scholarly journals Control of Water Use by Pearl Millet (Pennisetum typhoides)

1984 ◽  
Vol 20 (2) ◽  
pp. 135-149 ◽  
Author(s):  
G. R. Squire ◽  
P. J. Gregory ◽  
J. L. Monteith ◽  
M. B. Russell ◽  
Piara Singh

SUMMARYAt Hyderabad, India, stands of pearl millet were grown after the monsoon (a) with no irrigation after establishment and (b) with irrigation as needed to avoid stress. Increases of dry matter and leaf area were determined by regular harvesting. The interception of radiation by the foliage, uptake of water from the soil and stomatal conductance were monitored. Before anthesis at 42 days after sowing (DAS), the rate of dry matter production and the transpiration rate in the unirrigated stand were about 80% of the corresponding rates for the irrigated control, mainly because of a smaller stomatal conductance from 30 DAS. After anthesis, the unirrigated stand grew little and used only 10% of the water transpired by the control. This large difference was partitioned between loss of leaf area and smaller stomatal conductance in the ratio of approximately 2:1. Radiation intercepted by foliage in the irrigated stand produced 2.0 g of dry matter per MJ compared with 2.5 g MJ−1 for the same variety growing in the monsoon, a difference consistent with a smaller stomatal conductance in drier air.

1984 ◽  
Vol 20 (2) ◽  
pp. 135-149 ◽  
Author(s):  
G. R. Squire ◽  
P. J. Gregory ◽  
J. L. Monteith ◽  
M. B. Russell ◽  
Piara Singh

SUMMARYAt Hyderabad, India, stands of pearl millet were grown after the monsoon (a) with no irrigation after establishment and (b) with irrigation as needed to avoid stress. Increases of dry matter and leaf area were determined by regular harvesting. The interception of radiation by the foliage, uptake of water from the soil and stomatal conductance were monitored. Before anthesis at 42 days after sowing (DAS), the rate of dry matter production and the transpiration rate in the unirrigated stand were about 80% of the corresponding rates for the irrigated control, mainly because of a smaller stomatal conductance from 30 DAS. After anthesis, the unirrigated stand grew little and used only 10% of the water transpired by the control. This large difference was partitioned between loss of leaf area and smaller stomatal conductance in the ratio of approximately 2:1. Radiation intercepted by foliage in the irrigated stand produced 2.0 g of dry matter per MJ compared with 2.5 g MJ−1 for the same variety growing in the monsoon, a difference consistent with a smaller stomatal conductance in drier air.


2021 ◽  
Vol 10 (4) ◽  
pp. e41610414232
Author(s):  
Rilner Alves Flores ◽  
Marco Aurelio Pessoa de Sousa ◽  
Amanda Magalhães Bueno ◽  
Aline Franciel de Andrade ◽  
Jonas Pereira de Souza Junior ◽  
...  

Millet is a grass that has been highlighted for silage production, especially for being a productive tropical plant, and undemanding concerning soil fertility. Silicon (Si) is an alternative low-cost solution to increase biomass production, and it has been noticed to be beneficial to plants, especially when there are stress conditions. So, we analyzed the effects of foliar silicon application to gas exchanges, dry biomass production, and economic efficiency. We used a completely randomized experimental design consisting of foliar application of the following five doses of Si: 0; 0.84; 1.68; 2.52; and 3.36 g L-1 of Si as potassium and sodium silicate, with five replications. We measured the plant height, leaf area, Si contents and accumulation in the plants, gas exchanges (stomatal conductance, transpiration, and photosynthesis net), dry matter production, Si uptake and transport efficiency by plants and its economic efficiency. The Si content enhanced and accumulated in all parts of millet plants, reaching values between 2.5 and 3.3 g L-1. There were linear increases of approximately 9 and 27% in height and leaf area of millet plants to 3.36 g L-1 of Si. Stomatal conductance and transpiration reached maximum values representing an increase of 44.60 and 101.30%, respectively. The concentration of 3.36 g L-1 of Si increased photosynthesis by 76% and shoot dry matter production by 15%, when compared to the control. Si application is economically viable. The operational costs of application are suppressed, reaching to about US $ 45.32 ha-1 with the application of 2.52 g L-1 of Si.


2011 ◽  
Vol 37 (8) ◽  
pp. 1432-1440
Author(s):  
Cheng-Yan ZHENG ◽  
Shi-Ming CUI ◽  
Dong WANG ◽  
Zhen-Wen YU ◽  
Yong-Li ZHANG ◽  
...  

2010 ◽  
Vol 39 (8) ◽  
pp. 1666-1675 ◽  
Author(s):  
Marcio Mahmoud Megda ◽  
Francisco Antonio Monteiro

The objective of this work was to study morphogenic characteristics, and dry matter production of roots and shoots of marandu palisadegrass (Brachiaria brizantha cv. Marandu) submitted to combinations of nitrogen and potassium, in a nutritive solution, employing silica as substrate. The experiment was carried out in a greenhouse during the summer. It was used a 5² fractionated factorial scheme with 13 combinations of nitrogen and potassium, which were distributed in a randomized block design, with four replications. The nitrogen × potassium interaction was significant for the number of tillers and leaves, for leaf area, for shoots and root section dry mass, for total length and surface and specific length and surface in the roots. Production of aerial part dry mass positively correlated with the number of tillers and leaves and grass leaf area. Nitrogen rates modulated the root system development, and the root specific length and surface decreased when high rates of nitrogen and potassium were supllied. Nitrogen and potassium influence Marandu palisadegrass morphogenic characteristics, which are determinant for grass dry matter production.


1980 ◽  
Vol 31 (6) ◽  
pp. 1103 ◽  
Author(s):  
WC Morgan ◽  
DG Parbery

As well as reducing dry matter production of lucerne, infection of 15 % of the leaf area by Pseucbpeziza medicaginis reduced digestibility by 14% and crude protein content by 16%. Infection caused oestrogenic activity in green lucerne.


1982 ◽  
Vol 22 (115) ◽  
pp. 76 ◽  
Author(s):  
KA Boundy ◽  
TG Reeves ◽  
HD Brooke

The effect of serial planting on dry matter production, leaf area, grain yield and yield components cf Lupinus angustifoiius (cvv. Uniwhite, Uniharvest and Unicrop) and L. albus (cv. Ultra) was investigated in field plots at Rutherglen in 1973 and 1974. Delayed planting reduced dry matter production of all cultivars, and leaf area for Ultra. Differences in dry matter partitioning were observed between the late flowering Uniharvest, and the early flowering Unicrop and Ultra. In Uniharvest, delayed plantings resulted in a greater proportion of total dry matter being produced during the flowering phase, whereas the reverse was true for Unicrop and Ultra. The later flowering cultivars showed marked grain yield and yield component reduction with later sowing. Yields were reduced by 160.6 kg/ha and 222.5 kg/ha for each week's delay in sowing Uniharvest and Uniwhite, respectively. This effect was offset in the early flowering cultivars by greater development of lateral branches. In addition, when Unicrop and Ultra were planted in April, pod and flower abortion on the main stem resulted from low temperatures at flowering time. Optimum sowing time was early April for Uniwhite and Uniharvest, and early May for Unicrop and Ultra. Excellent vegetative growth under ideal moisture conditions highlighted the poor harvest indices of lupins and the scope for genetic improvement in the genus.


1988 ◽  
Vol 15 (6) ◽  
pp. 815 ◽  
Author(s):  
GC Wright ◽  
KT Hubick ◽  
GD Farquhar

Variation in water-use efficiency (W, g of total dry matter produced/kg water used), and its correlation with cultivar isotope discrimination in leaves (Δ) was assessed in peanut plants grown in small canopies in the field. Plants were grown in separate minilysimeters that were both embedded in the ground and positioned above the crop. Differences among cultivars were found in W and � and the relationship between W and Δ was compared for plants grown in open and closed canopies. Genetic variability in W in plants grown in the field under non-limiting water conditions was demonstrated, with Tifton-8, of Virginia habit, having the highest W (3.71 g/kg) and Rangkasbitung, an Indonesian cultivar of Spanish habit, the lowest (2.46 g/ kg). Variability in W was due to variation in total dry matter production more than that of water use. A strong negative correlation was found between Δ and W, and also between Δ and total dry matter. The relationship between whole plant W, including roots, and Δ was stronger than that between shoot W, without roots and Δ. The improvement occurred because of variation among cultivars in the root to shoot ratio. This highlights the importance of taking account of root dry matter in studies concerning W. There were significant differences in W and Δ between plants in pots above-ground compared to pots in the ground, with above-ground plants having significantly lower values of both W and Δ. The ranking of W and Δ among cultivars was not affected by the contrast in environment, which suggests these parameters are under strong genetic control. Total above-ground dry matter yield at maturity was negatively correlated with Δ, while pod yield was not. It appears a negative association between harvest index and Δ may exist; however not all cultivars used in this and other studies follow this response. Both water-use efficiency, Wand total dry matter production are negatively correlated with Δ in leaves of peanut plants grown in small canopies in the field. Measurement of Δ may prove a useful trait for selecting cultivars with improved W and total dry matter yield under field conditions.


1967 ◽  
Vol 45 (11) ◽  
pp. 2063-2072 ◽  
Author(s):  
Holger Brix

Seedlings of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) were grown in growth chambers under all combinations of three temperatures (13, 18, and 24 °C) and three light intensities (450, 1000, and 1800 ft-c). Dry matter production of leaves, stem, and roots was determined at 65 and 100 days after germination. The leaf area produced per unit of leaf dry weight and the dry matter distribution to the plant organs was measured. Net assimilation rates between the ages of 65 and 100 days were calculated. Rates of photosynthesis per unit of leaf were determined at different light intensities and temperatures, and rates of respiration of plant top and of roots were found for different temperatures.Increasing light intensity affected dry matter production in two opposing ways: (i) it increased the rate of photosynthesis per unit leaf area, and (ii) it decreased the leaf area added per unit of dry matter produced. A pronounced increase in growth with increase in temperature from 13 to 18 °C was a result of a temperature influence on production of leaf area rather than the effect of photosynthesis per unit of leaf. Net assimilation rates decreased with increase in temperature at all light intensities.


Sign in / Sign up

Export Citation Format

Share Document