Irrigation of Dwarf Wheats in the Yaqui Valley of Mexico

1977 ◽  
Vol 13 (4) ◽  
pp. 353-367 ◽  
Author(s):  
R. A. Fischer ◽  
J. H. Lindt ◽  
A. Glave

SUMMARYThe response of the latest wheat cultivars to irrigation regimes was studied between 1970 and 1975 in a heavy soil of the Yaqui Valley of north-west Mexico. Yield showed greatest sensitivity to water shortage in the period 65–110 days after seeding (spike emergence around 90 days), due largely to responses in grains/m2. More frequent irrigation increased yields 5–10% over the average of 7 t/ha obtained with the commonly-adopted five irrigation regime. Various irrigation criteria were tested: potential evapotranspiration calculations seemed the most useful. Measurement of leaf permeability (with an air flow porometer) showed more promise than the use of plant water potential (measured with a pressure chamber).

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541b-541
Author(s):  
Rita Giuliani ◽  
James A. Flore

Potted peach trees grown outdoors during the 1997 season were subjected to drought and subsequent rewatering to evaluate their dynamic response to soil water content. The investigation was primarily focused on the early detection of plant water stress to prevent negative effects on the growth. Leaf chlorophyll fluorescence and canopy temperature estimates (by infra-red thermometry) were conducted. Drought effect on physiological processes were detected through by estimates of canopy development rate, leaf gas-exchange measurements; while leaf water potential was measured to characterize plant water status. A decrease in the canopy's development rate was found 1 week after irrigation was stopped, which also coincided with a more-negative leaf water potential, whereas a decrease of the gas-exchange activities occurred several days later. No significant differences between the stressed and control plants were recorded by the chlorophyll fluorescence parameters (Fo, Fm, Fv and the ratio Fv/Fm), whereas the infra-red estimates of canopy temperature detected a slight increase of the canopy surface temperature (connected to the change of leaf energy balance and in relation to partial stomatal closure) on the non-irrigated plants 1 week after the beginning of the trial. The use of infra-red thermometry for early detection of water shortage is discussed.


2010 ◽  
Author(s):  
Vasu Udompetaikul ◽  
Shrini K Upadhyaya ◽  
David C Slaughter ◽  
Bruce D Lampinen

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1604
Author(s):  
Pratapsingh Suresh Khapte ◽  
Pradeep Kumar ◽  
Nav Raten Panwar ◽  
Uday Burman ◽  
Youssef Rouphael ◽  
...  

Protected vegetable cultivation is a fast-growing sector in which grafting plays a crucial role for success. Cucumber is predominantly grown under protected conditions. The popular slicing (mini) cucumber comprises two segments, single- and cluster-fruit-bearing. In the present study, the performance of select fruit-bearing hybrids grafted as scions onto commercial Cucurbita hybrid rootstock ‘NS-55’ was evaluated under three different low-cost protected structures in arid regions. With respect to type of protected structure, cucumber performance was superior under a naturally ventilated polyhouse (NVP) than an insect net house (INH) or a shade net house (SNH). Micro-climate parameters inside NVP (air temperature, RH and PAR) were more congenial for cucumber than those in net houses, thereby facilitating improved physiology (chlorophyll fluorescence, chlorophyll and plant water potential) and leaf mineral status. Grafting invariably improved growth and yield parameters under all protected structures. Overall plant performance was better in the grafted cluster-fruit-bearing hybrid ‘Terminator’ than the single-fruit-bearing hybrid ‘Nefer’ or their non-grafted counterparts. Furthermore, NVP was found to be superior to net houses for water productivity, and grafted plants were more water use efficient than their counterpart non-grafted plants. Thus, NVP can be considered a suitable low-cost protected structure in conjunction with grafting to boost cucumber crop and water productivity in arid regions.


1984 ◽  
Vol 102 (2) ◽  
pp. 415-425 ◽  
Author(s):  
M. McGowan ◽  
P. Blanch ◽  
P. J. Gregory ◽  
D. Haycock

SummaryShoot and root growth and associated leaf and soil water potential relations were compared in three consecutive crops of winter wheat grown in the same field. Despite a profuse root system the crop grown in the second drought year (1976) failed to dry the soil as throughly as the crops in 1975 and 1977. Measurements of plant water potential showed that the restricted utilization of soil water reserves by this crop was associated with failure to make any significant osmotic adjustment, leading to premature loss of leaf turgor and stomatal closure. The implications of these results for models to estimate actual crop evaporation from values of potential evaporation are discussed.


1999 ◽  
Vol 41 (3) ◽  
pp. 299-308 ◽  
Author(s):  
José Luis León-de la Luz ◽  
Enrique Troyo-Diéguez ◽  
M.Magdalena Ortega-Nieblas ◽  
Francisco López-Gutiérrez
Keyword(s):  

1981 ◽  
Vol 29 (3) ◽  
pp. 311 ◽  
Author(s):  
BR Tunstall ◽  
DJ Connor

Water input, soil water storage and plant water status were measured at monthly intervals over 2� years In a mature brigalow (Acacla harpophylla) forest. Redistribution of rainfall by the canopy was slight and stem flow averaged only 1.8%, but the direct loss of intercepted water accounted for 15% of the Annual ramfall In the wettest condltlon the soil stored 890 mm of water to a depth of 3 m The minimum sod water store measured under severe drought conditions was 840 mm when the dawn values of plant water potential were -6.8 MPa The soil water potentials below 1 m were consistently around -3.5 MPa due largely to high salt concentrations The tendency in a drying soil was towards a uniform profile of soil water potentlal, and soil water at depths below 1 m was extracted only when dawn plant water potentials were less than - 3.5 MPa Over monthly Intervals the maximum and minimum rates of evapotransplratlon were 3.3 and 0 .46 mm/d respectively, and the pattern of community water use was related to rainfall and not to potentlal evaporation. To survive in such an environment the plants develop and withstand extremely low water potentials associated wlth the low availability of water and the high evaporative demand.


Sign in / Sign up

Export Citation Format

Share Document