EFFECTS OF 30 YEARS REPEATED FERTILIZER APPLICATIONS ON SOIL PROPERTIES, MICROBES AND CROP YIELDS IN RICE–WHEAT CROPPING SYSTEMS

2014 ◽  
Vol 51 (3) ◽  
pp. 355-369 ◽  
Author(s):  
CHENG HU ◽  
SHUANG-LAI LI ◽  
YAN QIAO ◽  
DONG-HAI LIU ◽  
YUN-FENG CHEN

SUMMARYLong-term fertilization experiment has been conducted since 1981 to study the effect of soil management practices on soil fertility, soil carbon and nitrogen sequestration, soil culturable microbe counts and crop yields at the Nanhu Experimental Station in the Hubei Academy of Agricultural Sciences (situated in the middle reach of the Yangtze River and the rice–wheat cropping system). The experiment was designed with the following eight treatments: (1) unfertilized treatment: Control; (2) inorganic nitrogen fertilizer treatment: N; (3) inorganic nitrogen plus inorganic phosphorus fertilizer treatment: NP; (4) inorganic nitrogen, inorganic phosphorus plus inorganic potassium fertilizer treatment: NPK; (5) pig dung compost (manure) treatment: M; (6) inorganic nitrogen fertilizer plus manure: NM; (7) inorganic nitrogen, inorganic phosphorus fertilizer plus manure treatment: NPM and (8) inorganic nitrogen, inorganic phosphorus, inorganic potassium fertilizer plus manure treatment: NPKM. The results showed that long-term application of organic manure in combination with inorganic fertilizer significantly (p < 0.05) increased soil organic C concentrations compared with the corresponding inorganic fertilizers alone. Soil organic C contents were significantly (p < 0.05) increased in balanced application of NPK fertilizers in comparison to unbalanced application of fertilizers. After 30 years of experiment, soil organic C and total N sequestration rate averagely were 0.48 t ha−1 year−1 and 28.3 kg ha−1 year−1 in the fertilized treatments respectively; nevertheless, it were 0.27 t ha−1 year−1 and 9.7 kg ha−1 year−1 in the unfertilized treatment. Application of organic fertilizer in combination with inorganic fertilizer significantly (p < 0.05) increased culturable microbial counts compared with the corresponding inorganic fertilizers alone. The balanced application of NPK fertilizers significantly (p < 0.05) increased culturable microbial counts compared with unbalanced application of fertilizers. The average grain yield of wheat and rice was significantly (p < 0.05) higher in organic manure combined with inorganic fertilizer treatment than in inorganic fertilizer alone and unfertilized control. Therefore, long-term application of organic manure combined with inorganic fertilizer and balanced application of NPK fertilizers could increase soil organic C and total N sequestration, culturable microbial counts and crop grain yields.

2001 ◽  
Vol 81 (3) ◽  
pp. 349-355 ◽  
Author(s):  
D. F. E. McArthur ◽  
P M Huang ◽  
L M Kozak

Research has suggested a link between the bioavailability of soil Cd and total soil organic matter. However, some research suggested a negative relationship between total soil organic matter and bioavailable soil Cd while other research suggested a positive relationship. This study investigated the relationship between soil Cd and both the quantity and quality of soil organic matter as influenced by long-term cultivation. Two Orthic Chernozemic surface soil samples, one from a virgin prairie and the other from an adjacent cultivated prairie, were collected from each of 12 different sites throughout southern Saskatchewan, Canada. The samples were analyzed for total organic C, total Cd, Cd availability index (CAI), and pH. The nature of the soil organic matter was investigated with 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy (13C CPMAS NMR). The total soil Cd, CAI, and total soil organic C of the cultivated soils were significantly lower than those of the virgin soils whereas the opposite trend was observed for the soil pH and the aromaticity of the organic C. The reduced CAI in the cultivated soils was related to the increase in both the soil pH and the aromaticity of the organic C. No relationship was found between the CAI and the soil organic C content, but a significant positive correlation was found between total organic C and total Cd in both the virgin and the cultivated soils. As well, a significant positive correlation was found between the fraction of total Cd removed from the soil after long-term cultivation and the corresponding fraction of organic C removed. Key words: Long-term cultivation, soil organic matter, 13C CPMAS NMR, cadmium


Soil Research ◽  
2004 ◽  
Vol 42 (8) ◽  
pp. 875 ◽  
Author(s):  
W. J. Wang ◽  
R. C. Dalal ◽  
P. W. Moody

Abstract Agricultural soils play an important role in the global carbon (C) cycling and can act as a significant C sink if managed properly. The long-term (33 years) effects of no till (NT) v. conventional till (CT), stubble retention (SR) v. stubble burning (SB), and N fertiliser application (NF) v. nil N fertilisation (N0) on soil organic C sequestration, and their seasonal variations during the fallow period, were studied in a winter cereal–summer fallow cropping system under semi-arid subtropical climate in Queensland, Australia. The function of different density fractions of soil organic C in determining total organic C (TOC) dynamics and sequestration was investigated. Significant effect of NT, SR, or NF on soil organic C level was observed only in the top 10 cm soil and when they were practiced together, with the TOC contents being 1.1 to 3.4 t/ha higher under NT + NF + SR than under other treatments. There were significant seasonal fluctuations in TOC contents at different stages of the fallow period, and the lowest levels of TOC and treatment effects were observed in the late fallow period. Density fractionation of soil organic C showed that light fraction C (<1.6 g/cm3) declined rapidly during the fallow period and did not accumulate substantially in soil. TOC dynamics, either as a consequence of seasonal variations or as a long-term response to different farming practices, were predominantly controlled by the changes in the heavy fraction C (>1.6 g/cm3).


2000 ◽  
Vol 68 (3) ◽  
pp. 219-246 ◽  
Author(s):  
R.L Yadav ◽  
B.S Dwivedi ◽  
Kamta Prasad ◽  
O.K Tomar ◽  
N.J Shurpali ◽  
...  

Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Fiona A. Robertson ◽  
Peter J. Thorburn

The Australian sugar industry is moving away from the practice of burning the crop before harvest to a system of green cane trash blanketing (GCTB). Since the residues that would have been lost in the fire are returned to the soil, nutrients and organic matter may be accumulating under trash blanketing. There is a need to know if this is the case, to better manage fertiliser inputs and maintain soil fertility. The objective of this work was to determine whether conversion from a burning to a GCTB trash management system is likely to affect soil fertility in terms of C and N. Indicators of short- and long-term soil C and N cycling were measured in 5 field experiments in contrasting climatic conditions. The effects of GCTB varied among experiments. Experiments that had been running for 1–2 years (Harwood) showed no significant trash management effects. In experiments that had been running for 3–6 years (Mackay and Tully), soil organic C and total N were up to 21% greater under trash blanketing than under burning, to 0.10 or 0.25 m depth (most of this effect being in the top 50 mm). Soil microbial activity (CO2 production) and soil microbial biomass also increased under GCTB, presumably as a consequence of the improved C availability. Most of the trash C was respired by the microbial biomass and lost from the system as CO2. The stimulation of microbial activity in these relatively short-term GCTB systems was not accompanied by increased net mineralisation of soil N, probably because of the greatly increased net immobilisation of N. It was calculated that, with standard fertiliser applications, the entire trash blanket could be decomposed without compromising the supply of N to the crop. Calculations of possible long-term effects of converting from a burnt to a GCTB production system suggested that, at the sites studied, soil organic C could increase by 8–15%, total soil N could increase by 9–24%, and inorganic soil N could increase by 37 kg/ha.year, and that it would take 20–30 years for the soils to approach this new equilibrium. The results suggest that fertiliser N application should not be reduced in the first 6 years after adoption of GCTB, but small reductions may be possible in the longer term (>15 years).


2006 ◽  
Vol 86 (1) ◽  
pp. 141-151 ◽  
Author(s):  
A. F. Plante ◽  
C. E. Stewart ◽  
R. T. Conant ◽  
K. Paustian ◽  
J. Six

Agricultural management affects soil organic matter, which is important for sustainable crop production and as a greenhouse gas sink. Our objective was to determine how tillage, residue management and N fertilization affect organic C in unprotected, and physically, chemically and biochemically protected soil C pools. Samples from Breton, Alberta were fractionated and analysed for organic C content. As in previous reports, N fertilization had a positive effect, tillage had a minimal effect, and straw management had no effect on whole-soil organic C. Tillage and straw management did not alter organic C concentrations in the isolated C pools, while N fertilization increased C concentrations in all pools. Compared with a woodlot soil, the cultivated plots had lower total organic C, and the C was redistributed among isolated pools. The free light fraction and coarse particulate organic matter responded positively to C inputs, suggesting that much of the accumulated organic C occurred in an unprotected pool. The easily dispersed silt-sized fraction was the mineral-associated pool most responsive to changes in C inputs, whereas the microaggregate-derived silt-sized fraction best preserved C upon cultivation. These findings suggest that the silt-sized fraction is important for the long-term stabilization of organic matter through both physical occlusion in microaggregates and chemical protection by mineral association. Key words: Soil organic C, tillage, residue management, N fertilization, silt, clay


Sign in / Sign up

Export Citation Format

Share Document