Maize grain and straw yields over 14 consecutive years in burned and mulched Mucuna pruriens var. utilis and Pueraria phaseoloides relay cropping systems

2020 ◽  
pp. 1-15
Author(s):  
Stefan Hauser ◽  
Jacqueline Henrot ◽  
Samuel Korie

Abstract The cover crops Mucuna pruriens var. utilis and Pueraria phaseoloides were introduced to African farmers to improve crop production on degraded soils, yet they appear not to be adopted at scale. In the humid forest zone of West and Central Africa, the dominant Acrisols and Nitisols are inherently poor even when not degraded through agriculture. In this zone, sole maize cropping and vegetable production systems are gaining importance, yet both suffer from nutrient deficiencies. Cover crops were often introduced along with a system change, requiring biomass retention, mainly for nutrient retention reasons. Farmers in the zone commonly use slash and burn systems due to added weed control and ease of operations on clean fields. This study evaluated mucuna and pueraria with and without burning the fallow biomass in an annual sole maize crop relay system against the burned and retained natural fallow. Over 14 consecutive years, biomass burning did not cause lower maize grain yields in any of the fallow types, on the contrary, the economically important marketable cob yields were higher when biomass was burned (mulched 2.10 cobs m−2 vs. 2.26 cobs m−2 when burned, p < 0.07). After cover crop fallow, maize grain yields were significantly higher than after natural fallow (1.92 Mg ha−1) over the 14 years, with maize yields in the pueraria treatment (2.63 Mg ha−1) out yielding those in the mucuna treatment (2.28 Mg ha−1). Maize produced 1.92 cobs m−2 in natural fallow, significantly less than in the mucuna (2.23 m−2, p < 0.013) and the pueraria (2.39 m−2, p < 0.001) fallow. Introducing mucuna or pueraria cover crops into slash and burn systems appears as a suitable measure to increase yields without changing the land preparation approach.

2017 ◽  
Vol 6 (4) ◽  
pp. 142 ◽  
Author(s):  
Mutondwa M. Phophi ◽  
Paramu L. Mafongoya ◽  
Alfred O. Odindo ◽  
Lembe S. Magwaza

Soil health is important for sustainable crop production. Frequent soil cultivation has a negative impact on soil health, resulting in loss of soil macrofauna. Conservation agriculture can be practiced to improve soil health by improving the abundance of soil macrofauna. Three leguminous cover crops were tested for soil macrofauna abundance Vigna unguiculata, (cowpea) Lablab purpureus L. (dolichos lablab) and Mucuna pruriens (L.) DC (velvet bean). The experiment was done in two contrasting experimental sites of KwaZulu-Natal (Ukulinga and Bergville) in a randomised complete block design replicated three times. Bare plot and herbicide treatments served as controls. Natural fallow was used to make a comparison to all the other treatments. Cowpea (39 species) had the highest soil macrofauna abundance in Bergville. Lablab (57 species) had the highest soil macrofauna in Ukulinga. Cowpea (0.75 species) and lablab (0.61 species) improved soil macrofauna diversity respectively in Bergville. Natural fallow (0.46 species) had the lowest soil macrofauna diversity in Bergville. Lablab (0.56 species) and velvet bean (0.74 species) had high soil macrofauna species diversity in Ukulinga. Bare plot (0.3 species) had the lowest soil macrofauna species diversity respectively. It can be concluded that cowpea and lablab can be recommended for improving soil macrofauna abundance in conservation agriculture.


1999 ◽  
Vol 35 (1) ◽  
pp. 101-109 ◽  
Author(s):  
P. M. Kormawa ◽  
A. Y. Kamara ◽  
S. C. Jutzi ◽  
N. Sanginga

Cutting and carrying of mulch from established tree plots is an alternative to in situ mulch in agroforestry systems. Through the cut-and-carry method, the undesirable effects of tree-crop competition characterized by in situ mulching can be avoided. An economic evaluation of the cut-and-carry method of providing nutrients for maize production was carried out based on investigations in south-western Nigeria. The results showed that the use of mulch from multi-purpose trees (MPTs) through the cut-and-carry method contributed to higher maize grain yields than those obtained with fertilizer or in the untreated controls. However, because of high labour requirements and scarcity of land in the study area, providing nutrients for crop production by this method is unprofitable both in the short and the long term. This may serve as a constraint for the adoption of this technology by farmers. Alternative options requiring less labour and land requirements should be investigated in the quest to replace shifting cultivation.


2016 ◽  
Vol 107 (2) ◽  
pp. 409
Author(s):  
Faezeh Zaefarian ◽  
Zahara Shakibafar ◽  
Mohammad Rezvani ◽  
Hamid SALEHIAN

<p>Cover crops influence on canopy structure and light interception of maize (<em>Zea mays</em> L.) and velvetleaf (<em>Abutilon theophrasti</em> Medik), was studied in a field experiment. Treatments included planting of bean (<em>Phaseolus vulgaris</em> L.), soybean (<em>Glycine max </em>(L.) Merr.) and berseem clover (<em>Trifolium alexandrium</em> L.) as cover crops at the same date and 21 days after maize. Sole cropping of maize under weed- free and weedy conditions were also included in this experiment. All tested cover crops significantly reduced leaf area density and height of velvetleaf up to 50 %, while maize leaf area density increased in the presence of cover crops. Among cover crops, bean and soybean were the most effective in reducing velvetleaf leaf area density and height. Bean and soybean also strongly reduced absorbed light by velvetleaf by up to 80 % compared to clover. Maize grain yields were significantly influenced by cover crops planting in the inter row space. Compared to weeds free plots, only treatment with soybean as a cover crop resulted in similar maize grain yields, while maize intercropping with bean and clover significantly reduced maize yields. Delayed planting of cover crops, 21 day after maize, increased maize grain yield compared to cover crops and maize planting at the same time.</p>


2016 ◽  
Vol 51 (9) ◽  
pp. 1213-1222 ◽  
Author(s):  
Arminda Moreira de Carvalho ◽  
Mercedes Maria da Cunha Bustamante ◽  
Thais Rodrigues Coser ◽  
Robélio Leandro Marchão ◽  
Juaci Vitória Malaquias

Abstract The objective of this work was to evaluate the effect of two legumes (Crotalaria juncea and Mucuna pruriens), as cover crops, and of natural fallow, as a control treatment, on the emissions of NOx, N2O, and CO2 from an Oxisol cultivated with corn, under conventional and no-tillage systems, in the Cerrado region, in Central Brazil. Variations of CO2 fluxes in the soil were explained mainly by soil humidity and, in the legumes, under conventional system, by soil NH4+-N concentration. Plots with legumes under no-tillage system had higher annual emissions of CO2, NOx, and N2O than natural fallow. Results show that the use of legumes as cover crops favors the emissions of NOx-N + N2O-N and CO2-C. However, when considering the potential for mitigation of CO2 and nitrogen oxide emissions from the soil, it is important to evaluate changes in soil carbon and nitrogen stocks.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 599A-599
Author(s):  
K.M. Batal ◽  
D.R. Decoteau ◽  
D.M. Granberry ◽  
B.G. Mullinix ◽  
D.C. Sanders ◽  
...  

Pepper and sweet corn were tested in a rotation with crimson clover and velvet bean (Mucuna pruriens) cover crops at different locations in Georgia, North Carolina, and South Carolina from 1995 to 1996. Vegetable production with minimum-till following the cover crops was compared with two different conventional methods (following rye cover or fallow). All minimum-till/cover crop treatments caused reduction of total number of pepper fruit, compared to the conventional methods. Effects on premium grade (Fancy + U.S. #1) were similar to the effects on total fruit. The highest percentage of premium grade was produced by both conventional methods in 1996. Sweet corn responded similarly to these treatments in 1995. However, in 1996, clover plots had corn yields nearly as good as the conventional plots. As in bell pepper, plots with velvet bean cover produced lower yield in 1996. Treatment effects on number of marketable corn were the same as the effects on total ears produced.


1986 ◽  
Vol 22 (3) ◽  
pp. 207-214 ◽  
Author(s):  
M. A. Mohamed Saleem ◽  
R. M. Otsyina

SUMMARYMaize grain yields were significantly higher following one to three years of Stylosanthes than after natural fallow or repeated cropping. This demonstrates an important benefit of the forage legume in addition to its value as a ruminant feed supplement. The implications for the development of traditional agro-pastoral production systems are discussed.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1807 ◽  
Author(s):  
Silke Hemming ◽  
Feije de Zwart ◽  
Anne Elings ◽  
Isabella Righini ◽  
Anna Petropoulou

The global population is increasing rapidly, together with the demand for healthy fresh food. The greenhouse industry can play an important role, but encounters difficulties finding skilled staff to manage crop production. Artificial intelligence (AI) has reached breakthroughs in several areas, however, not yet in horticulture. An international competition on “autonomous greenhouses” aimed to combine horticultural expertise with AI to make breakthroughs in fresh food production with fewer resources. Five international teams, consisting of scientists, professionals, and students with different backgrounds in horticulture and AI, participated in a greenhouse growing experiment. Each team had a 96 m2 modern greenhouse compartment to grow a cucumber crop remotely during a 4-month-period. Each compartment was equipped with standard actuators (heating, ventilation, screening, lighting, fogging, CO2 supply, water and nutrient supply). Control setpoints were remotely determined by teams using their own AI algorithms. Actuators were operated by a process computer. Different sensors continuously collected measurements. Setpoints and measurements were exchanged via a digital interface. Achievements in AI-controlled compartments were compared with a manually operated reference. Detailed results on cucumber yield, resource use, and net profit obtained by teams are explained in this paper. We can conclude that in general AI performed well in controlling a greenhouse. One team outperformed the manually-grown reference.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 94-94
Author(s):  
Russell C Carrell ◽  
Sandra L Dillard ◽  
Mary K Mullenix ◽  
Audrey Gamble ◽  
Russ B Muntifering

Abstract Use of cool-season annual cover crops through grazing has been shown to be a potential tool in extending the grazing season, while still mitigating environmental risks associated with warm-season row crop production. Although data describing the effects of grazing on soil health are not novel, effects of grazing length on animal performance and cover crop production are limited. The objective was to determine cattle performance and forage production when grazing a cool-season annual cover-crop. Twelve, 1.2-ha pastures were established in a four species forage mix and randomly allocated to be grazed through either mid-February (FEB), mid-March (MAR), or mid-April (APR) with a non-grazed control (CON). Three tester steers were randomly placed in each paddock and a 1:1 forage allowance was maintained in each paddock using put-and-take steers. Animals were weighed every 30 d for determination of average daily gain (ADG). Forage was harvested bi-weekly and analyzed for forage production, neutral detergent fiber (NDF), and acid detergent fiber (ADF). Fiber fractions were measured using an ANKOM fiber analyzer (ANKOM Tech, Macedon, NY). All data were analyzed using MIXED procedure of SAS version 9.4 (SAS Inst., Cary, NC). Differences in forage mass were detected between CON and FEB (3,694.75 vs. 2,539.68 kg/ha; P &lt; 0.003), CON and MAR (3,694.75 vs. 1,823.45 kg/ha; P &lt; 0.001), and CON and APR (3,694.75 vs. 1,976.23 kg/ha; P &lt; 0.001). Differences in total gain/acre were detected between APR and MAR (212.24 vs. 101.74 kg/ha; P &lt; 0.0001), APR and FEB (212.24 vs 52.65 kg/ha; P &lt; 0.0001), and FEB and MAR (101.74 vs. 52.65 kg/ha; P &lt; 0.003). No differences were detected for tester ADG (1.23 kg/day, P = 0.56), NDF (44.9%, P = 0.99), or ADF (27.2%, P = 0.92) among treatments. These results indicate that cattle removal date effected forage yield and total gain/hectare.


2021 ◽  
pp. 1-10
Author(s):  
X.M. Yang ◽  
W.D. Reynolds ◽  
C.F. Drury ◽  
M.D. Reeb

Although it is well established that soil temperature has substantial effects on the agri-environmental performance of crop production, little is known of soil temperatures under living cover crops. Consequently, soil temperatures under a crimson clover and white clover mix, hairy vetch, and red clover were measured for a cool, humid Brookston clay loam under a corn–soybean–winter wheat/cover crop rotation. Measurements were collected from August (after cover crop seeding) to the following May (before cover crop termination) at 15, 30, 45, and 60 cm depths during 2018–2019 and 2019–2020. Average soil temperatures (August–May) were not affected by cover crop species at any depth, or by air temperature at 60 cm depth. During winter, soil temperatures at 15, 30, and 45 cm depths were greater under cover crops than under a no cover crop control (CK), with maximum increase occurring at 15 cm on 31 January 2019 (2.5–5.7 °C) and on 23 January 2020 (0.8–1.9 °C). In spring, soil temperatures under standing cover crops were cooler than the CK by 0.1–3.0 °C at 15 cm depth, by 0–2.4 °C at the 30 and 45 cm depths, and by 0–1.8 °C at 60 cm depth. In addition, springtime soil temperature at 15 cm depth decreased by about 0.24 °C for every 1 Mg·ha−1 increase in live cover crop biomass. Relative to bare soil, cover crops increased near-surface soil temperature during winter but decreased near-surface soil temperature during spring. These temperature changes may have both positive and negative effects on the agri-environmental performance of crop production.


Sign in / Sign up

Export Citation Format

Share Document