scholarly journals Effects of Crop Rotations, Winter and Summer Cover Crops, and Minimum-till on Pepper and Sweet Corn Production

HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 599A-599
Author(s):  
K.M. Batal ◽  
D.R. Decoteau ◽  
D.M. Granberry ◽  
B.G. Mullinix ◽  
D.C. Sanders ◽  
...  

Pepper and sweet corn were tested in a rotation with crimson clover and velvet bean (Mucuna pruriens) cover crops at different locations in Georgia, North Carolina, and South Carolina from 1995 to 1996. Vegetable production with minimum-till following the cover crops was compared with two different conventional methods (following rye cover or fallow). All minimum-till/cover crop treatments caused reduction of total number of pepper fruit, compared to the conventional methods. Effects on premium grade (Fancy + U.S. #1) were similar to the effects on total fruit. The highest percentage of premium grade was produced by both conventional methods in 1996. Sweet corn responded similarly to these treatments in 1995. However, in 1996, clover plots had corn yields nearly as good as the conventional plots. As in bell pepper, plots with velvet bean cover produced lower yield in 1996. Treatment effects on number of marketable corn were the same as the effects on total ears produced.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 462E-463
Author(s):  
Greg D. Hoyt

An experiment was established to determine the effect of different winter cover crops residues on yields of no-till pumpkins, yellow summer squash, and sweet corn. Residue treatments of fallow, triticale, crimson clover, little barley, and crimson clover + little barley were fall established and killed before spring no-till planting in 1998 and 1999. All summer vegetables received recommended fertilizer rates and labeled pesticides. Spring cover crop growth and biomass measurements ranged from 1873 to 6362 kg/ha. No-till sweet corn yields among the various cover residue treatments were greater where crimson clover and crimson clover + little barley (mixture) were used as residue in 1999, but not significantly different in 1998. No-till pumpkins showed the beneficial affect cover crop residue had on vegetable yields when dry conditions exist. Triticale and crimson clover + little barley (mixture) residues reduced soil water evaporation and produced more numbers of fruit per hectare (5049 and 5214, respectively) and greater weights of fruit (20.8 and 20.9 Mg/ha) than the other residue treatments (3725 to 4221 fruit/ha and 11.8 to 16.1 Mg/ha, respectively). No-till summer squash harvest showed steady increases in yield through time by all treatments with crimson clover residue treatment with the greatest squash yields and triticale and little barley residue treatments with the lowest squash yields. We found that sweet corn and squash yields were greater where legume cover residues were used compared to grass cover residues, whereas, pumpkin yields were higher where the greatest quantity of mulch was present at harvest (grass residues).


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


EDIS ◽  
2021 ◽  
Author(s):  
Ramdas Kanissery ◽  
Eugene McAvoy ◽  
Richard N. Raid ◽  
Johan Desaeger ◽  
Julien Beuzelin

Chapter 17 of the Vegetable Production Handbook.


1999 ◽  
Vol 91 (6) ◽  
pp. 934-939 ◽  
Author(s):  
A. A. Isse ◽  
Angus F. MacKenzie ◽  
Katrine Stewart ◽  
Daniel C. Cloutier ◽  
Donald L. Smith

HortScience ◽  
1997 ◽  
Vol 32 (5) ◽  
pp. 866-870 ◽  
Author(s):  
Nancy G. Creamer ◽  
Mark A. Bennett ◽  
Benjamin R. Stinner

Planting polyculture mixtures of cover crops can optimize the benefits of their use. Thirteen polyculture mixtures of cover crops were evaluated in Columbus and Fremont, Ohio, to find a species mix that would establish quickly for erosion control, overwinter in Ohio, contribute sufficient N and have a C : N ratio between 20:1 and 30:1 to optimize N availability for subsequent crops, be killable by mechanical methods, and have high weed control potential. All of the mixtures in Columbus had achieved 30% ground cover 1 month after planting, but only four of the mixtures achieved this in Fremont due to poor conditions at planting. Above-ground biomass (AGB) accumulation in the mixtures ranged from 3631 to 13,642 kg·ha-1 in Columbus, and 449 to 12,478 kg·ha-1 in Fremont. Nitrogen in the AGB ranged from 74 to 269 kg·ha-1 in Columbus, and 10 to 170 kg·ha-1 in Fremont. Weed cover in the cover crop plots ranged from 1% to 91% eight weeks after cover crop kill in Columbus, and 12% to 90% seven weeks after cover crop kill in Fremont. Because one or more species in each screened mixture was determined not to be suitable, none of the mixtures was optimum. However, information gained about performance of individual species within the mixtures is also useful. `Nitro' alfalfa (Medicago sativa L.), ladino clover (Trifolium repense L.), subterranean clover (Trifolium subterraneum L.), Austrian winter peas [Pisum sativum ssp. Arvense (L.) Poir], and annual ryegrass (Lolium multiflorum Lam.) did not overwinter dependably in Ohio. Tall fescue (Festuca arundinacea L.), perennial ryegrass (Lolium perenne L.), and orchardgrass (Dactylis glomerata L.) did not compete well with taller, more vigorous species, and were not persistent in the mixtures. Medium and mammoth red clover (Trifolium pratense L.), annual and perennial ryegrass, and white and yellow blossom sweetclover [Melilotus alba Desr., and Melilotus officianalis (L). Desr.], were not killable by mechanical methods. Individual species that established quickly, were competitive in the mixtures, overwintered dependably, and were killed by mechanical methods were rye (Secale cereale L.), barley (Hordeum vulgare L.), crimson clover (Trifolium incarnatum L.), and hairy vetch (Vicia villosa Roth.)


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 669d-669
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. No significant effects of tillage on sweet corn yields were detected. Following corn not receiving inorganic N, vetch produced cover crop total N yields of 130 kg·ha–1 that were over three-times greater than those obtained with rye. Following rye winter covercrops, addition of ammonium nitrate to corn significantly (P < 0.05) increased corn yields and foliar N concentrations compared to treatments not receiving N. However, following vetch, corn yields and foliar N concentrations obtained without N fertilization equaled those obtained with N fertilization following rye or vetch. Available soil N was significantly (P < 0.05) greater following vetch compared to rye for ≈9 weeks after corn planting and peaked ≈4 weeks after planting. It was concluded that no-tillage sweet corn was successful and N fixed by vetch was able to sustain sweet corn production.


2018 ◽  
Vol 19 (1) ◽  
pp. 18
Author(s):  
Supriyono Supriyono ◽  
Tohari Tohari ◽  
Abdul Syukur ◽  
Didik Indradewa

<p>This research does to known: 1) the effect of season, 2) the effect of cover crop kind and organic fertilizer, and 3) the interaction of two factors on growth and yield of velvet bean as cover crops. This research was conducted in Tancep, Ngawen, Gunungkidul at 170 m usl, litosol, 5-17 cm level of soil tillage, 9-10<sup>o</sup> elevation level, was started at December 2002 and finished at August 2003.</p><p>This research design was factorial-RCBD, 1<sup>st</sup> factor was planting season on 2 level, rainy and dry seasons, 2<sup>nd</sup> factor was cover crop kind on 6 levels, rase and putih gunungkidul velvet bean, Cm and Cp as conventional cover crops, rase and putih gunungkidul with organic fertilizer velvet bean. Per planting hole with 1 plant for velvet bean and 10 plant for coventional cover crop.</p><p>The result of this research were: 1<sup>st</sup>, velvet bean growth on rainy season very high than dry season, 2<sup>nd</sup> vegetative growth rate on velvet bean higher than conventional cover crop, 3<sup>rd</sup> without fertilizer, velvet bean have some growth and yield comparing by fertilizer velvet bean and 4<sup>th</sup> some yield variable, dry season was indicated better than rainy season.</p>


2017 ◽  
Vol 6 (4) ◽  
pp. 142 ◽  
Author(s):  
Mutondwa M. Phophi ◽  
Paramu L. Mafongoya ◽  
Alfred O. Odindo ◽  
Lembe S. Magwaza

Soil health is important for sustainable crop production. Frequent soil cultivation has a negative impact on soil health, resulting in loss of soil macrofauna. Conservation agriculture can be practiced to improve soil health by improving the abundance of soil macrofauna. Three leguminous cover crops were tested for soil macrofauna abundance Vigna unguiculata, (cowpea) Lablab purpureus L. (dolichos lablab) and Mucuna pruriens (L.) DC (velvet bean). The experiment was done in two contrasting experimental sites of KwaZulu-Natal (Ukulinga and Bergville) in a randomised complete block design replicated three times. Bare plot and herbicide treatments served as controls. Natural fallow was used to make a comparison to all the other treatments. Cowpea (39 species) had the highest soil macrofauna abundance in Bergville. Lablab (57 species) had the highest soil macrofauna in Ukulinga. Cowpea (0.75 species) and lablab (0.61 species) improved soil macrofauna diversity respectively in Bergville. Natural fallow (0.46 species) had the lowest soil macrofauna diversity in Bergville. Lablab (0.56 species) and velvet bean (0.74 species) had high soil macrofauna species diversity in Ukulinga. Bare plot (0.3 species) had the lowest soil macrofauna species diversity respectively. It can be concluded that cowpea and lablab can be recommended for improving soil macrofauna abundance in conservation agriculture.


2000 ◽  
Vol 92 (1) ◽  
pp. 144-151 ◽  
Author(s):  
Tim Griffin ◽  
Matt Liebman ◽  
John Jemison

2015 ◽  
Vol 31 (4) ◽  
pp. 309-317 ◽  
Author(s):  
Anne Pfeiffer ◽  
Erin Silva ◽  
Jed Colquhoun

AbstractA primary challenge of managing vegetable production on a small land base is the maintenance and building of soil quality. Previous studies have demonstrated the benefits of cover crops for improved soil quality; however, small growers struggle to fit cover crops into rotations. Small-scale growers with limited available land are under significant pressure to maximize their saleable yield and often work to maximize output by using intensive cropping practices that may include both early and late season crops, thus limiting the typical shoulder season windows in which cover crops can be grown. In-season living mulches may be an effective strategy to provide small-scale growers the benefits of cover crops with less land commitment than cover crops used in typical rotations. However, research on living mulches is generally not suited to small-scale organic production systems due to the typical reliance on chemical herbicide to suppress mulches. An experiment was designed with the goal of evaluating living mulch systems for space-limited organic vegetable production. In a 2-year study, four living mulch crops (buckwheat (Fagopyrum esculentum), field pea (Pisum sativum), crimson clover (Trifolium incarnatum) and medium red clover (Trifolium pratense)) and a cultivated control with no mulch cover were planted in early spring each year. Snap beans (Phaseolus vulgarisvar. Tavera), transplanted bell peppers (Capsicum annuumvar. Revolution), and transplanted fall broccoli (Brassica oleraceavar. Imperial) were then planted directly into living mulches. During each summer growing season, living mulches and weeds were mown between-rows and hand-weeded in-row approximately every 10–14 days as needed for management. Labor times for mowing and cultivation were found to be higher in all treatments relative to the cultivated control. An inverse relationship between living mulch biomass and weed biomass was observed, demonstrating that living mulches may contribute to weed suppression. However, lower vegetable yields were seen in the living mulch treatments, most likely due to resource competition among vegetables, living mulches and weeds. High pre-existing weed seedbank and drought conditions likely increased competition and contributed to reduced vegetable yield.


Sign in / Sign up

Export Citation Format

Share Document