scholarly journals exrB: amalB-linked gene inEscherichia coliB involved in sensitivity to radiation and filament formation

1974 ◽  
Vol 23 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Joseph Greenberg ◽  
Leonard J. Berends ◽  
John Donch ◽  
Michael H. L. Green

SUMMARYPAM 26, a radiation-sensitive mutant ofEscherichia colistrain B, is described. Its properties are attributable to a mutation in a gene,exrB, which is cotransducible withmalB. It differs fromuvrA(alsomalB-linked) derivatives of strain B in being sensitive to 1-methyl-3-nitro-1-nitroso-guanidine and γ-radiation, and in being able to reactivate UV-irradiated phage T3. It differs fromexrA(alsomalB-linked) derivatives of strain B in forming filaments during the course of normal growth as well as after irradiation. WhenexrBwas transduced into a K12 (lon+) strain, filaments did not form spontaneously. Three-point transductions established the order of markers asmet A malB exrB. Based on an analysis of the frequency of wild-type recombinants in a reciprocal transduction betweenexrAandexrBstrains, it was inferred that they are not isogenic and that the order of markers ismalB exrA exrB.

2006 ◽  
Vol 281 (43) ◽  
pp. 32303-32309 ◽  
Author(s):  
Taeko Komoda ◽  
Neuza S. Sato ◽  
Steven S. Phelps ◽  
Naoki Namba ◽  
Simpson Joseph ◽  
...  

Helix 38 (H38) in 23 S rRNA, which is known as the “A-site finger (ASF),” is located in the intersubunit space of the ribosomal 50 S subunit and, together with protein S13 in the 30 S subunit, it forms bridge B1a. It is known that throughout the decoding process, ASF interacts directly with the A-site tRNA. Bridge B1a becomes disrupted by the ratchet-like rotation of the 30 S subunit relative to the 50 S subunit. This occurs in association with elongation factor G (EF-G)-catalyzed translocation. To further characterize the functional role(s) of ASF, variants of Escherichia coli ribosomes with a shortened ASF were constructed. The E. coli strain bearing such ASF-shortened ribosomes had a normal growth rate but enhanced +1 frameshift activity. ASF-shortened ribosomes showed normal subunit association but higher activity in poly(U)-dependent polyphenylalanine synthesis than the wild type (WT) ribosome at limited EF-G concentrations. In contrast, other ribosome variants with shortened bridge-forming helices 34 and 68 showed weak subunit association and less efficient translational activity than the WT ribosome. Thus, the higher translational activity of ASF-shortened ribosomes is caused by the disruption of bridge B1a and is not due to weakened subunit association. Single round translocation analyses clearly demonstrated that the ASF-shortened ribosomes have higher translocation activity than the WT ribosome. These observations indicate that the intrinsic translocation activity of ribosomes is greater than that usually observed in the WT ribosome and that ASF is a functional attenuator for translocation that serves to maintain the reading frame.


2003 ◽  
Vol 185 (8) ◽  
pp. 2673-2679 ◽  
Author(s):  
J. Gowrishankar ◽  
Kaneyoshi Yamamoto ◽  
P. R. Subbarayan ◽  
Akira Ishihama

ABSTRACT Derivatives of the stationary-phase sigma factor σS of Escherichia coli lacking either of two conserved domains, the postulated N-terminal subregion 1.1 or the C-terminal region 4, were shown to be competent in vitro for transcription initiation from several σS-dependent promoters on supercoiled DNA templates. Unlike wild-type σS, however, the deletion derivatives were inactive on relaxed templates. The anomalous slow electrophoretic mobility of σS on denaturing gels was corrected by deletion of subregion 1.1, suggesting that this domain in σS may be structurally and functionally analogous to subregion 1.1 of σ70, substitutions in which have previously been shown to rectify the anomalous electrophoretic migration of σ70 (V. Gopal and D. Chatterji, Eur. J. Biochem. 244:614-618, 1997).


mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Jordy Evan Sulaiman ◽  
Henry Lam

ABSTRACT Through adaptive laboratory evolution (ALE) experiments, it was recently found that when a bacterial population was repetitively treated with antibiotics, they will adapt to the treatment conditions and become tolerant to the drug. In this study, we utilized an ampicillin-tolerant Escherichia coli population isolated from an ALE experiment to study the mechanisms of persistence during ampicillin treatment and resuscitation. Interestingly, the persisters of this population exhibit filamentous morphology upon ampicillin treatment, and the filaments are getting longer over time. Proteomics analysis showed that proteins involved in carbohydrate metabolism are upregulated during antibiotic treatment, in addition to those involved in the oxidative stress response. Bacterial SOS response, which is associated with filamentation, was found to be induced on account of the increasing expression of RecA. Measurement of endogenous reactive oxygen species (ROS) revealed that the population have ∼100-fold less ROS generation under ampicillin treatment than the wild type, leading to a lower mutagenesis rate. Single-cell observations through time-lapse microscopy show that resuscitation of the filaments is stochastic. During resuscitation, proteins involved in the tricarboxylic acid (TCA) cycle, glyoxylate cycle and glycolytic processes, and ATP generation are downregulated, while ribosomal proteins and porins are upregulated in the filaments. One particular protein, ElaB, was upregulated by over 7-fold in the filaments after 3 h of resuspension in fresh medium, but its expression went down after the filaments divided. Knockout of elaB increased persistence on wild-type E. coli, and upon resumption of growth, mutants lacking elaB have a higher fraction of small colony variants (SCVs) than the wild type. IMPORTANCE Persisters are a subpopulation of cells with enhanced survival toward antibiotic treatment and have the ability to resume normal growth when the antibiotic stress is lifted. Although proteomics is the most suitable tool to study them from a system-level perspective, the number of persisters that present naturally is too few for proteomics analysis, and thus the complex mechanisms through which they are able to survive antibiotic stresses and resuscitate in fresh medium remain poorly understood. To overcome that challenge, we studied an evolved Escherichia coli population with elevated persister fraction under ampicillin treatment and obtained its proteome profiles during antibiotic treatment and resuscitation. We discovered that during treatment with ampicillin, this tolerant population employs an active oxidative stress response and exhibits lower ROS levels than the wild type. Moreover, an inner membrane protein which has implications in various stress responses, ElaB, was found to be highly upregulated in the persisters during resuscitation, and its knockout caused increased formation of small colony variants after ampicillin treatment, suggesting that ElaB is important for persisters to resume normal growth.


1969 ◽  
Vol 15 (6) ◽  
pp. 549-554
Author(s):  
Haskel Robern ◽  
F. S. Thatcher

The levels of ammonia- or glutamine-dependent carbamyl phosphate synthetase (CPS), aspartate transcarbamylase (ATC), and ornithine transcarbamylase (OTC) were determined in wild-type Escherichia coli and in three mutants resistant to γ-irradiation designated as 1γ, 6γ, and 12γ. Enzyme assays were conducted on the cultures after growth in an arginine–uracil-free medium (AUF) or in AUF medium supplemented with arginine and uracil (C).The growth rate of the wild type and 1γ was the same in AUF or C medium but the levels of CPS, ATC, and OTC in the 1γ mutant ranged from two to four times as high as in the wild-type strain when grown in AUF medium. The 6γ mutant grew more slowly than the wild type and 1γ strains but its rate of growth was the same in all media. When this mutant was grown in AUF medium, the levels of CPS and OTC were as high as in the 1γ mutant but the level of ATC was about the same as in the wild-type strain. The 12γ mutant was the slowest growing and required both arginine and uracil. When we grew the culture in limiting amounts of uracil and excess arginine or vice versa, the ammonia-dependent activity of CPS was higher than in the wild-type strain, but glutamine-dependent CPS, OTC, and ATC were not synthesized by this mutant. Cultures grown in medium C showed only residual activity of all enzymes tested. These results suggest that (1) the 1γ, 6γ, and 12γ mutants have abnormally low pools of arginine and uracil; (2) the mechanism for feedback inhibition is more sensitive to ionizing radiation than the catalytic mechanism; (3) all damage caused by γ-radiation is at the gene level; (4) the locus controlling the synthesis of the ammonia-dependent activity of CPS is the least sensitive to γ-radiation, and is subject to cumulative repression by uracil and arginine.


Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1363-1371
Author(s):  
Kazuo Negishi ◽  
David Loakes ◽  
Roel M Schaaper

Abstract Deoxyribosyl-dihydropyrimido[4,5-c][1,2]oxazin-7-one (dP) is a potent mutagenic deoxycytidine-derived base analogue capable of pairing with both A and G, thereby causing G · C → A · T and A · T → G · C transition mutations. We have found that the Escherichia coli DNA mismatch-repair system can protect cells against this mutagenic action. At a low dose, dP is much more mutagenic in mismatch-repair-defective mutH, mutL, and mutS strains than in a wild-type strain. At higher doses, the difference between the wild-type and the mutator strains becomes small, indicative of saturation of mismatch repair. Introduction of a plasmid containing the E. coli mutL+ gene significantly reduces dP-induced mutagenesis. Together, the results indicate that the mismatch-repair system can remove dP-induced replication errors, but that its capacity to remove dP-containing mismatches can readily be saturated. When cells are cultured at high dP concentration, mutant frequencies reach exceptionally high levels and viable cell counts are reduced. The observations are consistent with a hypothesis in which dP-induced cell killing and growth impairment result from excess mutations (error catastrophe), as previously observed spontaneously in proofreading-deficient mutD (dnaQ) strains.


Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 667-678
Author(s):  
Mary Lee S Ledbetter ◽  
Rollin D Hotchkiss

ABSTRACT A sulfonamide-resistant mutant of pneumococcus, sulr-c, displays a genetic instability, regularly segregating to wild type. DNA extracts of derivatives of the strain possess transforming activities for both the mutant and wild-type alleles, establishing that the strain is a partial diploid. The linkage of sulr-c to strr-61, a stable chromosomal marker, was established, thus defining a chromosomal locus for sulr-c. DNA isolated from sulr-c cells transforms two mutant recipient strains at the same low efficiency as it does a wild-type recipient, although the mutant property of these strains makes them capable of integrating classical "low-efficiency" donor markers equally as efficiently as "high efficiency" markers. Hence sulr-c must have a different basis for its low efficiency than do classical low efficiency point mutations. We suggest that the DNA in the region of the sulr-c mutation has a structural abnormality which leads both to its frequent segregation during growth and its difficulty in efficiently mediating genetic transformation.


Sign in / Sign up

Export Citation Format

Share Document