scholarly journals Genetic analysis of an intersex allele (ix5) that regulates sexual phenotype of both female and male Drosophila melanogaster

2002 ◽  
Vol 80 (1) ◽  
pp. 7-14 ◽  
Author(s):  
M. ACHARYYA ◽  
R. N. CHATTERJEE

An allele of intersex (ix5) of Drosophila melanogaster has been characterized. The genetic analysis of the allele demonstrated that like other point mutations of ix, the ix5 allele also transformed diplo-X individuals into intersexes. The ix5 mutation also affects the arrangement of sex comb bristles on the forelegs of males, although they had morphologically nearly normal male genitalia. They often fail to display a sustained pattern of courtship activity when tested. Orcein-stained squash preparations of testes from ix5 males revealed a defect in spermatogenesis. Our results, taken together with those of McRobert & Tompkins (1985), indicate that the ix+ gene also functions in male sex determination.

Genetics ◽  
1995 ◽  
Vol 139 (4) ◽  
pp. 1649-1661 ◽  
Author(s):  
B A Chase ◽  
B S Baker

Abstract Sex-type in Drosophila melanogaster is controlled by a hierarchically acting set of regulatory genes. At the terminus of this hierarchy lie those regulatory genes responsible for implementing sexual differentiation: genes that control the activity of target loci whose products give rise to sexually dimorphic phenotypes. The genetic analysis of the intersex (ix) gene presented here demonstrates that ix is such a terminally positioned regulatory locus. The ix locus has been localized to the cytogenetic interval between 47E3-6 and 47F11-18. A comparison of the morphological and behavioral phenotypes of homozygotes and hemizygotes for three point mutations at ix indicates that the null phenotype of ix is to transform diplo-X animals into intersexes while leaving haplo-X animals unaffected. Analysis of X-ray induced, mitotic recombination clones lacking ix+ function in the abdomen of diplo-X individuals indicates that the ix+ product functions in a cell-autonomous manner and that it is required at least until the termination of cell division in this tissue. Taken together with previous analyses, our results indicate that the ix+ product is required to function with the female-specific product of doublesex to implement appropriate female sexual differentiation in diplo-X animals.


Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 537-545
Author(s):  
Justen Andrews ◽  
Brian Oliver

Abstract Nonautonomous inductive signals from the soma and autonomous signals due to a 2X karyotype determine the sex of Drosophila melanogaster germ cells. These two signals have partially overlapping influences on downstream sex determination genes. The upstream OVO-B transcription factor is required for the viability of 2X germ cells, regardless of sexual identity, and for female germline sexual identity. The influence of inductive and autonomous signals on ovo expression has been controversial. We show that ovo-B is strongly expressed in the 2X germ cells in either a male or a female soma. This indicates that a 2X karyotype controls ovo-B expression in the absence of inductive signals from the female soma. However, we also show that female inductive signals positively regulate ovo-B transcription in the 1X germ cells that do not require ovo-B function. Genetic analysis clearly indicates that inductive signals from the soma are not required for ovo-B function in 2X germ cells. Thus, while somatic inductive signals and chromosome karyotype have overlapping regulatory influences, a 2X karyotype is a critical germline autonomous determinant of ovo-B function in the germline.


Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 195-207
Author(s):  
M A Pultz ◽  
G S Carson ◽  
B S Baker

Abstract Sex determination in Drosophila is controlled by a cascade of regulatory genes. Here we describe hermaphrodite (her), a new component of this regulatory cascade with pleiotropic zygotic and maternal functions. Zygotically, her+ function is required for female sexual differentiation: when zygotic her+ function is lacking, females are transformed to intersexes. Zygotic her+ function may also play a role in male sexual differentiation. Maternally, her+ function is needed to ensure the viability of female progeny: a partial loss of her+ function preferentially kills daughters. In addition, her has both zygotic and maternal functions required for viability in both sexes. Temperature sensitivity prevails for all known her alleles and for all of the her phenotypes described above, suggesting that her may participate in an intrinsically temperature-sensitive process. This analysis of four her alleles also indicates that the zygotic and maternal components of of her function are differentially mutable. We have localized her cytologically to 36A3-36A11.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Roswitha A. Aumann ◽  
Irina Häcker ◽  
Marc F. Schetelig

Abstract The Sterile Insect Technique (SIT) is based on the mass release of sterilized male insects to reduce the pest population size via infertile mating. Critical for all SIT programs is a conditional sexing strain to enable the cost-effective production of male-only populations. Compared to current female-elimination strategies based on killing or sex sorting, generating male-only offspring via sex conversion would be economically beneficial by doubling the male output. Temperature-sensitive mutations known from the D. melanogaster transformer-2 gene (tra2ts) induce sex conversion at restrictive temperatures, while regular breeding of mutant strains is possible at permissive temperatures. Since tra2 is a conserved sex determination gene in many Diptera, including the major agricultural pest Ceratitis capitata, it is a promising candidate for the creation of a conditional sex conversion strategy in this Tephritid. Here, CRISPR/Cas9 homology-directed repair was used to induce the D. melanogaster-specific tra2ts SNPs in Cctra2. 100% female to male conversion was successfully achieved in flies homozygous for the tra2ts2 mutation. However, it was not possible, to identify a permissive temperature for the mutation allowing the rearing of a tra2ts2 homozygous line, as lowering the temperature below 18.5 °C interferes with regular breeding of the flies.


Genetics ◽  
1983 ◽  
Vol 105 (2) ◽  
pp. 357-370
Author(s):  
Takashi Sato ◽  
Michael A Russell ◽  
R E Denell

ABSTRACT A new recessive lethal mutation in Drosophila melanogaster, Enhancer of Polycomb [E(Pc)], and chromosomal deficiencies lacking this locus act as dominant enhancers of the Polycomb mutant syndrome in adults. Thus, although E(Pc)/+ flies are phenotypically normal, this locus is haplo-abnormal with respect to its effect on the Polycomb phenotype. Recombinational and deficiency mapping localize the E(Pc) locus on chromosome 2 proximally and very closely linked (∼0.1 map unit) to the engrailed gene. E(Pc) enhances the expression of all Polycomb point mutations examined including that of a deficiency, indicating that this interaction does not depend on the presence of an altered Polycomb gene product. In several respects the mutations extra sex comb, lethal(4)29, and Polycomblike resemble those at the Polycomb locus. In the presence of E(Pc), recessive alleles of extra sex comb and lethal(4)29 are rendered slightly pseudodominant, and the homoeotic effects of Polycomblike heterozygotes are also enhanced. However, E(Pc) does not affect the expression of dominant mutations within the Bithorax gene complex (Cbx) or Antennapedia gene complex (AntpNs, Antp  73b, Antpscx, AntpEfW15, ScrMsc) which give homoeotic transformations resembling those of the Polycomb syndrome. Available evidence from the study of adult phenotypes suggests that mutations at E(Pc) do not result in homoeotic changes directly but instead modify the expression of a specific set of functionally related homoeotic variants.


Genetics ◽  
1979 ◽  
Vol 91 (3) ◽  
pp. 491-520
Author(s):  
A García-Bellido

ABSTRACT Several mutations in the achaete-scute region of Drosophila have been analyzed phenotypically and cytologically. One group of them corresponds to point mutations, another t o rearrangements with one breakpoint in this region. Trans heterozygotes of the different point mutations or of the different rearrangements show poor complementation or fail to complement; therefore, they could be interpreted as mutations affecting the same gene product. However, left-right inversion recombinants and duplication-deficiency combinations between rearrangements with different cytological breakpoints uncover a complex organization of the achaete-scute region. This region seems to contain several independent achaete and scute functions, as well as a lethal function, arranged as a tandem reverse repeat at both sides of a lethal locus. Since all of the mutants show the same phenotype qualitatively, though different quantitatively, we suggest that these functions are of a reiterative nature. The achaete-scute wild-type condition may well be dependent on a multimeric gene product made of several evolutionary related monomers.


Genetics ◽  
1969 ◽  
Vol 62 (2) ◽  
pp. 353-358
Author(s):  
Eliezer Lifschytz ◽  
Raphael Falk

Genetics ◽  
1984 ◽  
Vol 106 (2) ◽  
pp. 249-265
Author(s):  
Jym Mohler ◽  
Mary Lou Pardue

ABSTRACT The region containing subdivisions 93C, 93D and 93E on chromosome 3 of Drosophila melanogaster has been screened for visible and lethal mutations. Treatment with three mutagens, γ irradiation, ethyl methanesulfonate and diepoxybutane, has produced mutations that fall into 20 complementation groups, including the previously identified ebony locus. No point mutations affecting the heat shock locus in 93D were detected; however, a pair of deficiencies that overlap in the region of this locus was isolated. Flies heterozygous in trans for this pair of deficiencies are capable of producing all of the major heat shock puffs (except 93D) and the major heat shock proteins. In addition, these flies show recovery of normal protein synthesis following a heat shock.


Sign in / Sign up

Export Citation Format

Share Document