scholarly journals Interrelations between effective population size and other pedigree tools for the management of conserved populations

2000 ◽  
Vol 75 (3) ◽  
pp. 331-343 ◽  
Author(s):  
ARMANDO CABALLERO ◽  
MIGUEL A. TORO

Genetic parameters widely used to monitor genetic variation in conservation programmes, such as effective number of founders, founder genome equivalents and effective population size, are interrelated in terms of coancestries and variances of contributions from ancestors to descendants. A new parameter, the effective number of non-founders, is introduced to describe the relation between effective number of founders and founder genome equivalents. Practical recommendations for the maintenance of genetic variation in small captive populations are discussed. To maintain genetic diversity, minimum coancestry among individuals should be sought. This minimizes the variances of contributions from ancestors to descendants in all previous generations. The method of choice of parents and the system of mating should be independent of each other because a clear-cut recommendation cannot be given on the latter.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0258714
Author(s):  
Kristina Lehocká ◽  
Simon A. Black ◽  
Adrian Harland ◽  
Ondrej Kadlečík ◽  
Radovan Kasarda ◽  
...  

This study evaluates the diversity of the so-called ‘Moroccan Royal lions’ using genealogical information. Lions are no longer extant in North Africa, but the previous wild population was an important element of the now-recognised northern subspecies (Panthera leo leo) that ranged across West Africa, North Africa and the Middle East into India. The remaining captive population of ‘Moroccan Royal lions’ seems to be significantly endangered by the loss of diversity due to the effective population size decrease. The pedigree file of this captive lion population consisted of 454 individuals, while the reference population included 98 animals (47 males and 51 females). The completeness of the pedigree data significantly decreased with an increasing number of generations. The highest percentage of pedigree completeness (over 70%) was achieved in the first generation of the reference population. Pedigree-based parameters derived from the common ancestor and gene origin were used to estimate the state of diversity. In the reference population, the average inbreeding coefficient was 2.14%, while the individual increase in inbreeding over generations was 2.31%. Overall, the reference population showed lower average inbreeding and average relatedness compared with the pedigree file. The number of founders (47), the effective number of founders (24) and the effective number of ancestors (22) were estimated in the reference population. The effective population size of 14.02 individuals confirms the critically endangered status of the population and rapid loss of diversity in the future. Thus, continuous monitoring of the genetic diversity of the ‘Moroccan Royal lion’ group is required, especially for long-term conservation management purposes, as it would be an important captive group should further DNA studies establish an affinity to P. leo leo.


2021 ◽  
Author(s):  
Michaela Halsey ◽  
John Stuhler ◽  
Natalia J Bayona-Vasquez ◽  
Roy N Platt ◽  
Jim R Goetze ◽  
...  

Organisms with low effective population sizes are at greater risk of extinction because of reduced genetic diversity.   Dipodomys elator  is a kangaroo rat that is classified as threatened in Texas and field surveys from the past 50 years indicate that the distribution of this species has decreased. This suggests geographic range reductions that could have caused population fluctuations, potentially impacting effective population size. Conversely, the more common and widespread  D. ordii  is thought to exhibit relative geographic and demographic stability. Genetic variation between  D. elator  and  D. ordii  samples was assessed using 3RAD, a modified restriction site associated sequencing approach. It was hypothesized that  D. elator  would show lower levels of nucleotide diversity, observed heterozygosity, and effective population size when compared to  D. ordii . Also of interest was identifying population structure within contemporary samples of  D. elator  and detecting genetic variation between temporal samples that could indicate demographic dynamics. Up to 61,000 single nucleotide polymorphisms were analyzed. It was determined that genetic variability and effective population size in contemporary  D. elator  populations were lower than that of  D. ordii, that there is only slight, if any, structure within contemporary  D. elator  populations, and there is little genetic differentiation between spatial or temporal historical samples suggesting little change in nuclear genetic diversity over 30 years. Results suggest that genetic diversity of  D. elator  has remained stable despite claims of reduced population size and/or abundance, which may indicate a metapopulation-like system, whose fluctuations might counteract any immediate decrease in fitness.


2009 ◽  
Vol 36 (7) ◽  
pp. 601 ◽  
Author(s):  
Mark M. Tanaka ◽  
Romane Cristescu ◽  
Desmond W. Cooper

Context. The management of wildlife populations aiming to control population size should also consider the preservation of genetic diversity. Some overabundant koala populations, for example, have low genetic variation. Different management strategies will affect population genetic variation differently. Aims. Here, we compare four strategies with respect to their effects on the effective population size, Ne , and therefore on genetic variation. Methods. The four strategies of interest are: (1) sterilisation or culling (which have the same effect on genetic variation); (2) random contraception of females with replacement; (3) random contraception of females without replacement; and (4) regular contraception, giving every female equal opportunity to reproduce. We develop mathematical models of these alternative schemes to evaluate their impact on Ne . We also consider the effect of changing population sizes by investigating a model with geometric population growth in which females are removed by sterilisation or culling. Key results. We find that sterilisation/culling at sexual maturity has the most detrimental effect on Ne , whereas regular contraception has no impact on Ne . Random contraception lies between these two extremes, leading to a moderate reduction in Ne . Removal of females from a growing population results in a higher Ne than the removal of females from a static population. Conclusions. Different strategies for controlling a population lead to different effective population sizes. Implications. To preserve genetic diversity in a wildlife population under control, the effective population size should be kept as large as possible. We suggest that a suitable approach in managing koala populations may be to prevent reproduction by all females older than a particular age.


2018 ◽  
Vol 98 (4) ◽  
pp. 741-749
Author(s):  
Katarzyna Stachowicz ◽  
Luiz F. Brito ◽  
Hinayah R. Oliveira ◽  
Stephen P. Miller ◽  
Flávio S. Schenkel

The loss of genetic variability in a population will drastically affect the success of a breeding program by reducing selection response and fitness and, consequently, affecting reproduction, resilience, and production efficiency. The objective of this study was to perform an in-depth analysis of the pedigree of the Canadian sheep breeds to assess the levels of inbreeding, effective population size, and other metrics of genetic diversity, which included the five most important sheep breeds in Canada: Dorset, Polypay (PO), Rideau-Arcott, Romanov (RV), and Suffolk, using a large dataset (1 336 926 animals). As measures of genetic diversity, effective population size, inbreeding coefficient, effective number of founders, effective number of founder genomes, effective number of nonfounders, and effective number of ancestors were estimated. The completeness and depth of the Canadian sheep pedigree datasets were reasonably high, with <20% parental information missing. More attention should be given to PO breed, which was found to have the smallest effective population size (55), and RV breed, which had the highest average level of inbreeding (4.8%). Techniques such as optimum contribution selection and minimum coancestry mating could be used to minimize the inbreeding of future generations, while maintaining genetic progress at a desirable level.


2016 ◽  
Vol 65 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Y. C. Miao ◽  
Z. J. Zhang ◽  
J. R. Su

Abstract Taxus yunnanensis, which is an endangered tree that is considered valuable because it contains the effective natural anticancer metabolite taxol and heteropolysaccharides, has long suffered from severe habitat fragmentation. In this study, the levels of genetic diversity in two populations of 136 individuals were analyzed based on eleven polymorphic microsatellite loci. Our results suggested that these two populations were characterized by low genetic diversity (NE = 2.303/2.557; HO = 0.168/0.142; HE = 0.453/0.517), a population bottleneck, a low effective population size (Ne = 7/9), a high level of inbreeding (FIS = 0.596/0.702), and a weak, but significant spatial genetic structure (Sp = 0.001, b = −0.001*). Habitat fragmentation, seed shadow overlap and limited seed and pollen dispersal and potential selfing may have contributed to the observed gene tic structure. The results of the present study will enable development of practical conservation measures to effectively conserve the valuable genetic resources of this endangered plant.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10348
Author(s):  
Austin S. Chipps ◽  
Amanda M. Hale ◽  
Sara P. Weaver ◽  
Dean A. Williams

There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D. intermedius (D. i. floridanus and D. i. intermedius) which are sympatric in this region of Texas, yet little differentiation using microsatellite loci. We suggest this pattern is due to secondary contact and hybridization and possibly incomplete lineage sorting at microsatellite loci. We also found evidence of some hybridization between D. ega and D. intermedius in this region of Texas. We recommend that our data serve as a starting point for the long-term genetic monitoring of these species in order to better understand the impacts of wind-related mortality on these populations over time.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 361 ◽  
Author(s):  
Shuqi Diao ◽  
Shuwen Huang ◽  
Zhiting Xu ◽  
Shaopan Ye ◽  
Xiaolong Yuan ◽  
...  

To investigate the genetic diversity, population structure, extent of linkage disequilibrium (LD), effective population size (Ne), and selection signatures in indigenous pigs from Guangdong and Guangxi in China, 226 pigs belonging to ten diverse populations were genotyped using single nucleotide polymorphism (SNP) chips. The genetic divergence between Chinese and Western pigs was determined based on the SNP chip data. Low genetic diversity of Dahuabai (DHB), Luchuan (LC), Lantang (LT), and Meihua (MH) pigs, and introgression of Western pigs into Longlin (LL), MH, and Yuedonghei (YDH) pigs were detected. Analysis of the extent of LD showed that indigenous pigs had low LD when pairwise SNP distance was short and high LD when pairwise SNP distance was long. Effective population size analysis showed a rapid decrease for Chinese indigenous pigs, and some pig populations had a relatively small Ne. This result indicated the loss of genetic diversity in indigenous pigs, and introgression from Western commercial pigs. Selection signatures detected in this study overlapped with meat quality traits, such as drip loss, intramuscular fat content, meat color b*, and average backfat thickness. Our study deepened understanding of the conservation status and domestication of Chinese indigenous pigs.


Sign in / Sign up

Export Citation Format

Share Document