Timing of events in an Early Cretaceous island arc–marginal basin system on South Georgia

1979 ◽  
Vol 116 (3) ◽  
pp. 167-179 ◽  
Author(s):  
P. W. G. Tanner ◽  
D. C. Rex

Summary19 new K–Ar mineral ages of 78-201 Ma and 3 Rb–Sr whole rock isochron ages of 81 ± 10, 127±4 and 181±30 Ma are presented from units of continental crust, mafic complex and island arc assemblage on South Georgia. The Drygalski Fjord Complex, part of the possible floor of the marginal basin in the southern part of the island, includes granodiorite and gabbro plutons of minimum age 180–200 Ma. Together with older metasediments they have been affected by a major thermal event at about 140 Ma, thought to have resulted from the emplacement of a mafic complex (Larsen Harbour Formation) during the initial opening of the marginal basin. Rocks of the Larsen Harbour Formation are cut by the Smaaland Cove intrusion dated by Rb–Sr whole rock isochron at 127±4 Ma. An island arc assemblage exposed to the SW of South Georgia consists of pyroclastic rocks cut by monzodiorite and andesite intrusions, which give radiometric ages of 81–103 Ma. These data suggest that the marginal basin opened during the late Jurassic (pre-140 Ma); that part of an earlier (early Mesozoic) magmatic arc is preserved in continental crust making up part of the floor of the basin; and that subduction continued beneath the island arc until at least the Senonian time. The younger plutons in the arc were emplaced at roughly the same time as turbidite facies rocks at deep levels in the marginal basin were being affected by penetrative deformation and metamorphism. The timing of events on South Georgia agrees closely with that deduced for the continuation of the same island arc–marginal basin system in South America. The 180–200 Ma plutons correlate with an older suite of plutonic rocks reported from the Antarctic Peninsula and southern Andes; they are part of a once-continuous magmatic arc related to subduction of the Pacific plate beneath Gondwanaland during the early Mesozoic.

1983 ◽  
Vol 120 (6) ◽  
pp. 607-612 ◽  
Author(s):  
H. Furnes ◽  
H. Austrheim ◽  
K. G. Amaliksen ◽  
J. Nordas

Summary. Quartz-keratophyres from an ensimatic island arc on Bømlo, southwest Norwegian Caledonides, resting on the Lykling ophiolite, have yielded a Rb/Sr whole rock age of 535 ± 46 Ma. This Cambrian age, which is a minimum age of formation for the ophiolite, indicates an early phase of subduction, corresponding with the orogenic activity known from northern Norway, i.e. the Finnmarkian. Before Middle Ordovician time, the ophiolite and ensimatic arc had been obducted onto continental crust and deformed, as they are unconformably overlain by a volcanic complex of subaerial rhyolites and andesites which have yielded Rb/Sr whole rock ages of 464 ± 16 and 468 ± 23 Ma respectively.


1979 ◽  
Vol 116 (3) ◽  
pp. 181-190 ◽  
Author(s):  
M. Suárez

SummaryThe Hardy Formation, a sequence of Upper Mesozoic volcanic rocks exposed in Peninsula Hardy (Isla Hoste) in the southernmost archipelago of Chile represents, at least in part, the island-arc assemblage of an island-arc-marginal-basin system related to an eastward dipping subduction zone. This island arc was founded on South American continental crust and is also represented in the island of South Georgia 2000 km to the E. The island-arc assemblage includes pyroclastic rocks, characterized by a high proportion of vitric material, and lava intercalations ranging in composition from rhyolite to basalt. These rocks underwent zeolite and prehnite-pumpellyite facies metamorphism and are gently folded, in contrast with the intense folding exhibited by the rocks exposed to the north of Peninsula Hardy. Silicic volcanics assigned to this assemblage underlie pillow lavas, and are intruded by dolerites and gabbros probably related to a Late Jurassic-Early Cretaceous ophiolite magmatism associated with the generation of a quasioceanic marginal basin. Volcanic turbidites (Yahgan Formation) were deposited into the marginal basin.It is suggested that in pre-marginal basin times the Hardy Formation interfingered towards the Atlantic with the silicic volcanics of the Tobifera Formation. However, recent geochemical work on the Tobifera Formation suggest an origin by continental crust anatexis in a volcano-tectonic rift zone related to upper mantle diapirism, whereas an island arc origin is favoured for at least the andesitic and basaltic components of the Hardy Formation. Therefore, the geology of Peninsula Hardy as presented here, confirms early assumptions of the splitting apart of a Middle–Upper Jurassic volcanic terrain along the Pacific margin of South America during the generation of a marginal basin. The spreading axis of the latter seems to have been located at the boundary of two somewhat overlapping petrotectonic assemblages: and island arc on the Pacific side and a silicic volcano-tectonic rift zone towards the Atlantic. A probably Cenozoic volcanic complex discordantly overlies the Yahgan and Hardy formations.


1976 ◽  
Vol 113 (4) ◽  
pp. 305-328 ◽  
Author(s):  
M. Suárez ◽  
T. H. Pettigrew

SummaryThe Upper Jurassic–Lower Cretaceous strato-tectonic belts of the southern Andes and South Georgia, 2000 km apart, can be correlated and explained as the products of an island-arc–back-arc system. From the Pacific Ocean to the Atlantic, these belts, which exhibit structural and metamorphic differences, are: (1) a pyroclastic belt developed on an ensialic volcanic arc; (2) a back-arc flysch sequence underlain in the southern Andes by a basic complex with oceanic affinities; this was intruded into continental crust as a result of sea-floor spreading which created a marginal basin; (3) a slate sequence deposited on a continental shelf. The pyroclastic and marginal basin belts and the adjacent part of the continental shelf were folded and uplifted during the early Upper Cretaceous, whereas the foreland part of the continental shelf assemblage underwent deformation during the early Tertiary.


2000 ◽  
Vol 37 (2-3) ◽  
pp. 359-383 ◽  
Author(s):  
Toby Rivers ◽  
David Corrigan

A continental-margin magmatic arc is inferred to have existed on the southeastern (present coordinates) margin of Laurentia from Labrador to Texas from ~1500-1230 Ma, with part of the arc subsequently being incorporated into the 1190-990 Ma collisional Grenville Orogen. Outside the Grenville Province, where the arc is known as the Granite-Rhyolite Belt, it is undeformed, whereas within the Grenville Province it is deformed and metamorphosed. The arc comprises two igneous suites, an inboard, principally quartz monzonitic to granodioritic suite, and an outboard tonalitic to granodioritic suite. The quartz monzonite-granodiorite suite was largely derived from continental crust, whereas the tonalitic-granodiorite suite is calc-alkaline and has a juvenile isotopic signature. Available evidence from the Grenville Province suggests that the arc oscillated between extensional and compressional settings several times during the Mesoproterozoic. Back-arc deposits of several ages, that formed during relatively brief periods of extension, include (1) mafic dyke swarms subparallel to the arc; (2) continental sediments, bimodal volcanics and plateau basalts; (3) marine sediments and volcanics formed on stretched continental crust; and (4) ocean crust in a marginal basin. Closure of the back-arc basins occurred during the accretionary Pinwarian (~1495-1445 Ma) and Elzevirian (~1250-1190 Ma) orogenies, as well as during three pulses of crustal shortening associated with the 1190-990 Ma collisional Grenvillian Orogeny. During the Elzevirian Orogeny, closure of the Central Metasedimentary Belt marginal basin in the southeastern Grenville Province was marked by subduction-related magmatism as well as by imbrication of back-arc deposits. The presence of a continental-margin magmatic arc on southeastern Laurentia during the Mesoproterozoic implies that other coeval magmatism inboard from the arc took place in a back-arc setting. Such magmatism was widespread and chemically diverse and included large volume "anorogenic" anorthosite-mangerite-charnockite-granite (AMCG) complexes as well as small volume alkaline, quartz-saturated and -undersaturated "within-plate" granitoids. Recognition of the ~300 million year duration of the Mesoproterozoic convergent margin of southeastern Laurentia suggests that there may be useful parallels with the evolution of the Andes, which has been a convergent margin since the early Paleozoic.


1996 ◽  
Vol 33 (5) ◽  
pp. 691-702 ◽  
Author(s):  
Sally Pehrsson ◽  
Simon Hanmer ◽  
Otto van Breemen

The Raglan gabbro belt of the Ontario Grenville Orogen is coincident with the top of the Central Metasedimentary Belt boundary thrust zone, a major mid-crustal shear zone separating the Central Gneiss Belt in the footwall from the Central Metasedimentary Belt in the hanging wall. It has been suggested that the gabbros making up the belt are coeval, that they formed in a marginal basin within the Central Metasedimentary Belt, and that they formed a horizon of Theologically stiff material that controlled the localization of the top of the boundary thrust zone during its initiation as the marginal basin closed at ca. 1190 Ma. U–Pb zircon dating of plutons within the Raglan gabbro belt was undertaken to test the coeval nature of intrusions in the belt. Magmatic crystallization ages for three of the gabbros fall in the range 1246–1227 Ma, and a fourth yields a minimum age of ca. 1175 Ma. The results are permissive of a common origin for the gabbros and allow that the Raglan gabbro belt may have been related to the marginal basin, at least with respect to the later stages of its evolution. Inherited 1440–1301 Ma zircons in the gabbros suggest interaction with underlying Central Gneiss Belt crust during magmatism and support an ensialic marginal-basin model, as opposed to an island-arc model, for the evolution of the northwestern part of the Central Metasedimentary Belt.


1995 ◽  
Vol 7 (1) ◽  
pp. 99-113 ◽  
Author(s):  
J.L. Smellie ◽  
M. Liesa ◽  
J.A. Muñoz ◽  
F. Sàbat ◽  
R. Pallàs ◽  
...  

Livingston Island contains several, distinctive sedimentary and volcanic sequences, which document the history and evolution of an important part of the South Shetland Islands magmatic arc. The turbiditic, late Palaeozoic–early Mesozoic Miers Bluff Formation (MBF) is divided into the Johnsons Dock and Napier Peak members, which may represent sedimentation in upper and lower mid-fan settings, respectively, prior to pre-late Jurassic polyphase deformation (dominated by open folding). The Moores Peak breccias are formed largely of coarse clasts reworked from the MBF. The breccias may be part of the MBF, a separate unit, or part of the Mount Bowles Formation. The structural position is similar to the terrigenous Lower Jurassic Botany Bay Group in the northern Antarctic Peninsula, but the precise stratigraphical relationships and age are unknown. The (?) Cretaceous Mount Bowles Formation is largely volcanic. Detritus in the volcaniclastic rocks was formed mainly during phreatomagmatic eruptions and redeposited by debris flows (lahars), whereas rare sandstone interbeds are arkosic and reflect a local provenance rooted in the MBF. The Pleistocene–Recent Inott Point Formation is dominated by multiple, basaltic tuff cone relicts in which distinctive vent and flank sequences are recognized. The geographical distribution of the Edinburgh Hill Formation is closely associated with faults, which may have been reactivated as dip-slip structures during Late Cenozoic extension (arc splitting).


Geosphere ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 1042-1057
Author(s):  
N.R. Riggs ◽  
T.B. Sanchez ◽  
S.J. Reynolds

Abstract A shift in the depositional systems and tectonic regime along the western margin of Laurentia marked the end of the Paleozoic Era. The record of this transition and the inception and tectonic development of the Permo-Triassic Cordilleran magmatic arc is preserved in plutonic rocks in southwestern North America, in successions in the distal back-arc region on the Colorado Plateau, and in the more proximal back-arc region in the rocks of the Buckskin Formation of southeastern California and west-central Arizona (southwestern North America). The Buckskin Formation is correlated to the Lower–Middle Triassic Moenkopi and Upper Triassic Chinle Formations of the Colorado Plateau based on stratigraphic facies and position and new detrital zircon data. Calcareous, fine- to medium-grained and locally gypsiferous quartzites (quartz siltstone) of the lower and quartzite members of the Buckskin Formation were deposited in a marginal-marine environment between ca. 250 and 245 Ma, based on detrital zircon U-Pb data analysis, matching a detrital-zircon maximum depositional age of 250 Ma from the Holbrook Member of the Moenkopi Formation. An unconformity that separates the quartzite and phyllite members is inferred to be the Tr-3 unconformity that is documented across the Colorado Plateau, and marks a transition in depositional environments. Rocks of the phyllite and upper members were deposited in wholly continental depositional environments beginning at ca. 220 Ma. Lenticular bodies of pebble to cobble (meta) conglomerate and medium- to coarse-grained phyllite (subfeldspathic or quartz wacke) in the phyllite member indicate deposition in fluvial systems, whereas the fine- to medium-grained beds of quartzite (quartz arenite) in the upper member indicate deposition in fluvial and shallow-lacustrine environments. The lower and phyllite members show very strong age and Th/U overlap with grains derived from Cordilleran arc plutons. A normalized-distribution plot of Triassic ages across southwestern North America shows peak magmatism at ca. 260–250 Ma and 230–210 Ma, with relatively less activity at ca. 240 Ma, when a land bridge between the arc and the continent was established. Ages and facies of the Buckskin Formation provide insight into the tectono-magmatic evolution of early Mesozoic southwestern North America. During deposition of the lower and quartzite members, the Cordilleran arc was offshore and likely dominantly marine. Sedimentation patterns were most strongly influenced by the Sonoma orogeny in northern Nevada and Utah (USA). The Tr-3 unconformity corresponds to both a lull in magmatism and the “shoaling” of the arc. The phyllite and upper members were deposited in a sedimentary system that was still influenced by a strong contribution of detritus from headwaters far to the southeast, but more locally by a developing arc that had a far stronger effect on sedimentation than the initial phases of magmatism during deposition of the basal members.


Sign in / Sign up

Export Citation Format

Share Document